SCRAPIE USA

Transmissible Spongiform Encephalopathy TSE Prion PrP sheep and goats

My Photo
Name:
Location: BACLIFF, Texas, United States

My mother was murdered by what I call corporate and political homicide i.e. FOR PROFIT! she died from a rare phenotype of CJD i.e. the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. sporadic, simply meaning from unknown route and source. I have simply been trying to validate her death DOD 12/14/97 with the truth. There is a route, and there is a source. There are many here in the USA. WE must make CJD and all human TSE, of all age groups 'reportable' Nationally and Internationally, with a written CJD questionnaire asking real questions pertaining to route and source of this agent. Friendly fire has the potential to play a huge role in the continued transmission of this agent via the medical, dental, and surgical arena. We must not flounder any longer. ...TSS

Friday, December 10, 2021

USDA APHIS National Scrapie Eradication Program October 2021 Monthly Report Fiscal Year 2022

USDA APHIS National Scrapie Eradication Program October 2021 Monthly Report Fiscal Year 2022

***> As of October 31, 2021, 2,076 animals have been sampled for scrapie testing in FY 2022.

National Scrapie Eradication Program October 2021 Monthly Report Fiscal Year 2022

U.S. Department of Agriculture Animal and Plant Health Inspection Service Veterinary Services Strategy and Policy, Ruminant Health Center Small Ruminant Health

November 16, 2021

Program Summary

Performance Measures1 – No sheep or goats have tested positive at slaughter in FY 2022 out of 1,982 samples submitted (Chart 1, Chart 2).

Scrapie Testing Results1 – No Nor98-like or classical scrapie has been confirmed in goatsor sheep in FY 2022.

Surveillance Goals

The annual target is to test at least 40,000 animals each year for scrapie. 

As of October 31, 2021, 2,076 animals have been sampled for scrapie testing in FY 2022.

• 1,982 RSSS samples and 94 on-farm samples

• Of which 1,357 were sheep and 719 were goats.

Program Summary

Infected and Source Flocks – One flock in Texas has had an open infected status since April 2016, but there are no exposed animals on the premises. Animals in the Texas herd designated for test must be sampled and valid test results obtained before the status can be closed. The number of newly designated infected and source flocks by year since 1997, is shown in Chart 3. The peak wasin 2005 with 179 flocks.

Scrapie in Goats –The total number of NVSL confirmed positive cases in goats is 44 since FY 2002. Samples from three of these positive animals were collected through RSSS, one in November 2014, the second in July 2018, and the most recent in June 2019. The remainder of the positive cases have been found through testing of clinical suspects, testing of exposed animals, and trace-out investigations. Figure 1 shows the number of positive cases by state and by fiscal year of last reported case.

Components of Scrapie Surveillance

• Regulatory Scrapie Slaughter Surveillance (RSSS) started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. Samples have been collected from 698,992 animals since April 1, 2003. As of October 31, 2021, 1,982 samples have been collected in FY 2021, 1,299 from sheep and 683 from goats. There have been 491 NVSL confirmed positive animals (474 classical cases – 471 sheep and 3 goats) and 17 Nor98-like cases since the beginning of RSSS.

snip...see full report;


WEDNESDAY, DECEMBER 8, 2021 

Importation of Sheep, Goats, and Certain Other Ruminants AGENCY: Animal APHIA, USDA, FINAL RULE [Docket No. APHIS–2009–0095] RIN 0579–AD10


FRIDAY, DECEMBER 10, 2021 

Scrapie at Abattoir: Monitoring, Control, and Differential Diagnosis of Wasting Conditions during Meat Inspection 


wtf are they thinking, $$$, that's all they are thinking...terry

***> As of October 31, 2021, 2,076 animals have been sampled for scrapie testing in FY 2022.

well, if you don't look, you don't find, and this is the USDA APHIS et al motto now for all TSE Prion disease, the surveillance system is set up to fail...it's just science...terry

Why is USDA "only" testing 25,000 samples a year? USDA's surveillance strategy is to focus on the targeted populations where we are most likely to find disease if it is present. This is the most effective way to meet both OIE and our domestic surveillance standards. After completing our enhanced surveillance in 2006 and confirming that our BSE prevalence was very low, an evaluation of the program showed that reducing the number of samples collected to 40,000 samples per year from these targeted, high risk populations would allow us to continue to exceed these standards. In fact, the sampling was ten times greater than OIE standards. A subsequent evaluation of the program in 2016 using data collected over the past 10 years showed that the surveillance standards could still be met with a further reduction in the number of samples collected by renderers and 3D/4D establishments which have a very low OIE point value because the medical history of these animals is usually unknown. Therefore, in 2016, the number of samples to be tested was reduced to 25,000 where it remains today.


USDA APHIS BSE TSE PRION LOTTERY SYSTEM SET UP NOT TO FIND BSE TSE PRION IN THE USA

BSE Ongoing Monthly Surveillance Program

Last Modified: Dec 7, 2021

Public and animal health are protected from BSE by a stringent feed ban imposed by the Food and Drug Administration in 1997 and by the removal of all specified risk material which could harbor BSE. USDA also has a strong ongoing surveillance program in place to detect signs of BSE in cattle in the United States. The program samples approximately 25,000 animals each year and targets cattle populations where the disease is most likely to be found. The targeted population for ongoing surveillance focuses on cattle exhibiting signs of central nervous disorders or any other signs that may be associated with BSE, including cattle that cannot walk, are low-weight, injured, or dead. These types of cattle are sampled at farms, veterinary diagnostic laboratories, public health laboratories, slaughter facilities, veterinary clinics, and livestock markets. 


TUESDAY, SEPTEMBER 07, 2021 

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


Sunday, January 10, 2021 
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ... 



Sunday, January 10, 2021 

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019


Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission



Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification



WEDNESDAY, AUGUST 29, 2018 

***> USDA DROPS MAD COW TESTING FROM 40K A YEAR TO JUST 20K A YEAR, IMPOSSIBLE TO FIND BSE, BUT THEY DID, IN FLORIDA!


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Experimental transmission of the chronic wasting disease agent to swine after oral or intracranial inoculation

Author item MOORE, SARAH - Orise Fellow item WEST GREENLEE, M - Iowa State University item KONDRU, NAVEEN - Iowa State University item MANNE, SIREESHA - Iowa State University item Smith, Jodi item Kunkle, Robert item KANTHASAMY, ANUMANTHA - Iowa State University item Greenlee, Justin Submitted to: Journal of Virology Publication Type: Peer Reviewed Journal Publication Acceptance Date: 7/6/2017 Publication Date: 9/12/2017

Citation: Moore, S.J., West Greenlee, M.H., Kondru, N., Manne, S., Smith, J.D., Kunkle, R.A., Kanthasamy, A., Greenlee, J.J. 2017. Experimental transmission of the chronic wasting disease agent to swine after oral or intracranial inoculation. Journal of Virology. 91(19):e00926-17. https://doi.org/10.1128/JVI.00926-17.

Interpretive Summary: Chronic wasting disease (CWD) is a fatal disease of wild and captive deer and elk that causes damaging changes in the brain. The infectious agent is an abnormal protein called a prion that has misfolded from its normal state. Whether CWD can transmit to swine is unknown. This study evaluated the potential of pigs to develop CWD after either intracranial or oral inoculation. Our data indicates that swine do accumulate the abnormal prion protein associated with CWD after intracranial or oral inoculation. Further, there was evidence of abnormal prion protein accumulation in lymph nodes. Currently, swine rations in the U.S. could contain animal derived components including materials from deer or elk. In addition, feral swine could be exposed to infected carcasses in areas where CWD is present in wildlife populations. This information is useful to wildlife managers and individuals in the swine and captive cervid industries. These findings could impact future regulations for the disposal of offal from deer and elk slaughtered in commercial operations. U.S. regulators should carefully consider the new information from this study before relaxing feed ban standards designed to control potentially feed borne prion diseases.

Technical Abstract: Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of chronic wasting disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following oral or intracranial experimental inoculation. Crossbred piglets were assigned to one of three groups: intracranially inoculated (n=20), orally inoculated (n=19), or non-inoculated (n=9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled ('market weight' groups). The remaining pigs ('aged' groups) were allowed to incubate for up to 73 months post inoculation (MPI). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by western blotting (WB), antigen-capture immunoassay (EIA), immunohistochemistry (IHC) and in vitro real-time quaking induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC and/or WB. Using RT-QuIC, PrPSc was detected in lymphoid and/or brain tissue from pigs in all inoculated groups. Bioassay was positive in 4 out of 5 pigs assayed. This study demonstrates that pigs can serve as hosts for CWD, though with scant PrPSc accumulation requiring sensitive detection methods. Detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.


12 September 2017

Experimental Transmission of the Chronic Wasting Disease Agent to Swine after Oral or Intracranial Inoculation

Authors: S. Jo Moore, M. Heather West Greenlee, Naveen Kondru, Sireesha Manne, Jodi D. Smith, Robert A. Kunkle, Anumantha Kanthasamy, and Justin J. Greenlee 


AUTHORS INFO & AFFILIATIONS


Volume 91, Number 19

1 October 2017

ABSTRACT

ABSTRACT

Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as hosts for the agent of CWD is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Crossbred piglets were assigned to three groups, intracranially inoculated (n = 20), orally inoculated (n = 19), and noninoculated (n = 9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled (“market weight” groups). The remaining pigs (“aged” groups) were allowed to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by Western blotting (WB), antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC, and/or WB. By RT-QuIC, PrPSc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. The bioassay was positive in four out of five pigs assayed. This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. IMPORTANCE We challenged domestic swine with the chronic wasting disease agent by inoculation directly into the brain (intracranially) or by oral gavage (orally). Disease-associated prion protein (PrPSc) was detected in brain and lymphoid tissues from intracranially and orally inoculated pigs as early as 8 months of age (6 months postinoculation). Only one pig developed clinical neurologic signs suggestive of prion disease. The amount of PrPSc in the brains and lymphoid tissues of positive pigs was small, especially in orally inoculated pigs. Regardless, positive results obtained with orally inoculated pigs suggest that it may be possible for swine to serve as a reservoir for prion disease under natural conditions.


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.


CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

LINE TO TAKE

3. If questions on pharmaceuticals are raised at the Press conference, the suggested line to take is as follows:- 

 "There are no medicinal products licensed for use on the market which make use of UK-derived porcine tissues with which any hypothetical “high risk" ‘might be associated. The results of the recent experimental work at the CSM will be carefully examined by the CSM‘s Working Group on spongiform encephalopathy at its next meeting.

DO Hagger RM 1533 MT Ext 3201


While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...


we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.


May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...


3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...


But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...


Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....


Scrapie vs Chronic Wasting Disease CWD TSE Prion ???

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

Author 

 item Greenlee, Justin item Moore, S - Orise Fellow item Smith, Jodi - Iowa State University item Kunkle, Robert item West Greenlee, M - Iowa State University Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: 8/12/2015 Publication Date: N/A Citation: N/A

Interpretive Summary:

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


***> “In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.”

223. Scrapie in white-tailed deer: a strain of the CWD agent that efficiently transmits to sheep?

Justin J. Greenleea, Robyn D. Kokemullera, S. Jo Moorea and Heather West Greenleeb

aVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA; bDepartment of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA

CONTACT Justin J. Greenlee Justin.Greenlee@ars.usda.gov

ABSTRACT

Scrapie is a transmissible spongiform encephalopathy of sheep and goats that is associated with widespread accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the natural prion disease of cervid species, and the tissue distribution of PrPSc in affected cervids is similar to scrapie in sheep. There are several lines of evidence that suggest that multiple strains of CWD exist, which may affect the agent’s potential to transmit to hosts of the same or different species. We inoculated white-tailed deer with the scrapie agent from ARQ/ARQ sheep, which resulted in 100% attack rates by either the intracranial or oronasal route of inoculation. When examining tissues from the brainstems or lymphoid tissues by traditional diagnostic methods such as immunohistochemistry or western blots, it is difficult to differentiate tissues from deer infected with scrapie from those infected with CWD. However, there are several important differences between tissues from scrapie-infected white-tailed deer (WTD scrapie) and those infected with CWD (WTD CWD). First, there are different patterns of PrPSc deposition in the brains of infected deer: brain tissues from deer with WTD scrapie had predominantly particulate and stellate immunoreactivity whereas those from deer with WTD-CWD had large aggregates and plaque-like deposits. Secondly, the incubation periods of WTD scrapie isolates are longer than CWD isolates in mice expressing cervid prion protein. Most notably, the transmission potential of these two isolates back to sheep is distinctly different. Attempts to transmit various CWD isolates to sheep by the oral or oronasal routes have been unsuccessful despite observation periods of up to 7 years. However, WTD scrapie efficiently transmitted back to sheep by the oronasal route. Upon transmission back to sheep, the WTD scrapie isolate exhibited different phenotypic properties when compared to the sheep receiving the original sheep scrapie inoculum including different genotype susceptibilities, distinct PrPSc deposition patterns, and much more rapid incubation periods in transgenic mice expressing the ovine prion protein. The scrapie agent readily transmits between sheep and deer after oronasal exposure. This could confound the identification of CWD strains in deer and the eradication of scrapie from sheep.


***> “The scrapie agent readily transmits between sheep and deer after oronasal exposure. This could confound the identification of CWD strains in deer and the eradication of scrapie from sheep.”

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease


J Vet Diagn Invest . 2021 Jul;33(4):711-720. doi: 10.1177/10406387211017615. Epub 2021 May 28. D Cassmann 1, Rylie D Frese 1, Justin J Greenlee 1

Affiliations expand PMID: 34047228 PMCID: PMC8229824 (available on 2022-05-28)DOI: 10.1177/10406387211017615 Full text linksCite Abstract

The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. We compared the disease phenotype of sheep-adapted CWD to classical scrapie in sheep. We inoculated sheep intracranially with brain homogenate from first-passage mule deer CWD in sheep (sCWDmd). The attack rate in second-passage sheep was 100% (12 of 12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.

Keywords: PrPSc proteins; chronic wasting disease; deer; prions; scrapie; sheep.


***> ”Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally.”


Title: Second passage of chronic wasting disease of mule deer in sheep compared to classical scrapie after intracranial inoculation

Taken together, these data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. 


''We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation.''

Title: Passage of scrapie to deer results in a new phenotype upon return passage to sheep


Title: Transmission of the agent of sheep scrapie to deer results in PrPSc with two distinct molecular profiles 

***> In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile type readily passes to deer. 




TUESDAY, SEPTEMBER 07, 2021 

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


TUESDAY, AUGUST 17, 2021 

EU Feed ban Commission authorises use of certain animal proteins, risk another mad cow type outbreak


Many times media portrays atypical BSE strains as a spontaneous or sporadic event caused by old age. Sciences has shown us otherwise. All atypical BSE cases are not sporadic/spontaneous, OIE has recognized this. Atypical BSE is a risk factor for feed, science has shown us this, we must now recognize this risk factor in the FDA 589.2001 BSE feed regulatory system.

what does the oie now say about atypical BSE;

OIE Conclusions on transmissibility of atypical BSE among cattle

Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 


Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019

34 Scientific Commission/September 2019

3. Atypical BSE

The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.

The Group acknowledged the challenges in demonstrating the zoonotic transmission of atypical strains of BSE in natural exposure scenarios. Overall, the Group was of the opinion that, at this stage, it would be premature to reach a conclusion other than that atypical BSE poses a potential zoonotic risk that may be different between atypical strains.

4. Definitions of meat-and-bone meal (MBM) and greaves

snip...

REFERENCES

SNIP...END SEE FULL TEXT;


TUESDAY, SEPTEMBER 07, 2021 

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


***> Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.

***> As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 

***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.

Atypical L-type BSE

Emerg Infect Dis. 2017 Feb; 23(2): 284–287. doi: 10.3201/eid2302.161416 PMCID: PMC5324790 PMID: 28098532

Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle 


Our study clearly confirms, experimentally, the potential risk for interspecies oral transmission of the agent of L-BSE. In our model, this risk appears higher than that for the agent of classical BSE, which could only be transmitted to mouse lemurs after a first passage in macaques (14). We report oral transmission of the L-BSE agent in young and adult primates. Transmission by the IC route has also been reported in young macaques (6,7). A previous study of L-BSE in transgenic mice expressing human PrP suggested an absence of any transmission barrier between cattle and humans for this particular strain of the agent of BSE, in contrast to findings for the agent of classical BSE (9). Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.


Atypical H-type BSE

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge

This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains. 

PRION CONFERENCE 2018 CONFERENCE ABSTRACT

Published: 23 June 2011

Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits

The present study demonstrated successful intraspecies transmission of H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be minimally defined by oral transmission of different TSE agents (C-type, L-type, and H-type BSE agents) [59]. Oral transmission studies with H-type BSE-infected cattle have been initiated and are underway to provide information regarding the extent of similarity in the immunohistochemical and molecular features before and after transmission. In addition, the present data will support risk assessments in some peripheral tissues derived from cattle affected with H-type BSE.

References...END


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strainsNo

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE. 


''In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.'' 

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).


TUESDAY, SEPTEMBER 07, 2021 

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion

so far, we have been lucky. to date, with the science at hand, no cwd transmitted to cattle, that has been documented, TO DATE, WITH THE SCIENCE AT HAND, it's not to say it has not already happened, just like with zoonosis of cwd i.e. molecular transmission studies have shown that cwd transmission to humans would look like sporadic cjd, NOT nvCJD or what they call now vCJD. the other thing is virulence and or horizontal transmission. this is very concerning with the recent fact of what seems to be a large outbreak of a new tse prion disease in camels in Africa. there is much concern now with hay, straw, grains, and such, with the cwd tse prion endemic countries USA, Canada. what is of greatest concern is the different strains of cwd, and the virulence there from? this thing (cwd) keeps mutating to different strains, and to different species, the bigger the chance of one of these strains that WILL TRANSMIT TO CATTLE OR HUMANS, and that it is documented (i believe both has already occured imo with scienct to date). with that said, a few things to ponder, and i am still very concerned with, the animal feed. we now know from transmission studies that cwd and scrapie will transmit to pigs by oral routes. the atypical bse strains will transmit by oral routes. i don't mean to keep kicking a mad cow, just look at the science; 

***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle

Author item HALEY, NICHOLAS - Kansas State University item SIEPKER, CHRISTOPHER - Kansas State University item Greenlee, Justin item RICHT, JÜRGEN - Kansas State University Submitted to: Journal of General Virology Publication Type: Peer Reviewed Journal Publication Acceptance Date: 3/30/2016 Publication Date: 1/7/2016

Citation: Haley, N.J., Siepker, C., Greenlee, J.J., Richt, J.A. 2016. Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle. Journal of General Virology. 97:1720-1724.

Interpretive Summary: Chronic Wasting Disease (CWD), a fatal neurodegenerative disease that occurs in farmed and wild cervids (deer and elk) of North America, is a transmissible spongiform encephalopathy (TSE). TSEs are caused by infectious proteins called prions that are resistant to various methods of decontamination and environmental degradation. Cattle could be exposed to chronic wasting disease (CWD) by contact with infected farmed or free-ranging cervids. The purpose of this study was to use an in vitro amplification method called real time quaking induced conversion (RT-QuIC) to assess tissues from cattle inoculated with CWD for low levels of prions not detected by traditional diagnostic methods such as western blot and immunohistochemistry. This study reports that prions were identified by RT-QuIC only in cattle that were confirmed positive by traditional methods. However, prions were rarely identified in some peripheral tissues such as mesenteric lymph node, tonsil, or nasal turbinate that were not considered positive by traditional methods. These results suggest that cattle experimentally inoculated with CWD may have some limited amount of prion infectivity outside of the brain and spinal cord that may represent a previously unrecognized risk for transmission. This information could have an impact on regulatory officials developing plans to reduce or eliminate TSEs and farmers with concerns about ranging cattle on areas where CWD may be present.

Technical Abstract: Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central nervous system (CNS), as well as in both lymphatic and excretory tissues – an aspect of prion disease pathogenesis not observed in cattle with BSE. Using seeded amplification through real time quaking induced conversion (RT-QuIC), we investigated whether the bovine host or prion agent was responsible for this aspect of TSE pathogenesis. We blindly examined numerous central and peripheral tissues from cattle inoculated with CWD for prion seeding activity. Seeded amplification was readily detected in the CNS, though rarely observed in peripheral tissues, with a limited distribution similar to that of BSE prions in cattle. This seems to indicate that prion peripheralization in cattle is a host-driven characteristic of TSE infection. 


Title: Experimental transmission of transmissible spongiform encephalopathies (scrapie, chronic wasting disease, transmissible mink encephalopathy) to cattle and their differentiation from bovine spongiform encephalopathy

Author item Hamir, Amirali item CUTLIP, RANDALL item MILLER, JANICE item Kunkle, Robert item Richt, Juergen item Greenlee, Justin item Nicholson, Eric item Kehrli Jr, Marcus Submitted to: World Association of Veterinary Laboratory Diagnosticians Publication Type: Proceedings

Publication Acceptance Date: 8/10/2007 Publication Date: 11/11/2007

Citation: Hamir, A.N., Cutlip, R.C., Miller, J.M., Kunkle, R.A., Richt, J.A., Greenlee, J.J., Nicholson, E.M., Kehrli, Jr., M.E. 2007. Experimental transmission of transmissible spongiform encephalopathies (scrapie, chronic wasting disease, transmissible mink encephalopathy) to cattle and their differentiation from bovine spongiform encephalopathy. In: Proceedings of the World Association of Veterinary Laboratory Diagnosticians 13th International Symposium, November 11-14, 2007, Melbourne, Australia. p. 29. Interpretive Summary:

Technical Abstract: Introduction: Experimental cross-species transmission of TSE agents provides valuable information for identification of potential host ranges of known TSEs. This report provides a synopsis of TSE (scrapie, CWD, TME) transmission studies that have been conducted in cattle and compares these findings to those seen in animals with BSE. Materials & Methods: Generally 6-month-old bull calves were obtained and assigned to inoculated and control groups. Inoculated calves were housed in a Biosafety Level 2 isolation barn at the National Animal Disease Center (NADC), Ames, Iowa. Calves were inoculated intracerebrally with 1 ml of a 10% TSE brain inoculum. Results: Results of various TSE cattle experiments with intracerebral inoculation of scrapie, CWD and TME are shown in tabular form (Table 1). Table 1. Comparison of experimental scrapie, chronic wasting disease (CWD) and transmissible mink encephalopathy (TME) in cattle inoculated by the intracerebral route during first passage of the inocula. Abnormal CNS signs: Scrapie. Anorexia, weight loss, leg and back stiffness. Some showed incoordination and posterior weakness. Eventual severe lethargy. CWD. Anorexia, weight loss, occasional aimless circling, listlessness and excited by loud noises. TME. Variable hyperexcitability with occasional falling to the ground. Some showing circling and aggressive behavior. Incubation (survival) time: Scrapie. 14 – 18 months. CWD. 23 – 63 months. TME. 13 – 16 months. Attack rate: Scrapie. 100%. CWD. CWD from mule deer: 38%. CWD from elk: 86%. TME. 100% Histopatholgic lesions: Scrapie. Some vacuolation and central of chromatolysis of neurons. CWD. Isolated vacuolated neurons, a few degenerate axons, and a mild astrocytosis. TME. Extensive vacuolation of neuronal perikarya and neuropil. Presence of mild multifocal gliosis. Western blot (brainstem): Scrapie. All three isoforms of PrP**res present. CWD. All three isoforms of PrP**res seen. TME. All three isoforms of PrP**res seen. Immunohistochemistry: PrP**res in lymphoreticular tissues: Scrapie. Not present. CWD. Not present. TME. Not present. PrP**res in CNS: Scrapie. Present within perikaryon and processes of neurons. CWD. Multifocal distribution with labeling primarily in glial cells (astrocytes). TME. Diffusely present and usually evenly distributed in neuropil. Conclusions: 1. All three TSEs agents (scrapie, CWD and TME) are capable of propagating in cattle tissues when administered intracerebrally. 2. All three TSEs can be distinguished from each other and from BSE when inoculated intracerebrally by histopathology, immunohistochemistry and Western blot techniques.


Title: EXPERIMENTAL SECOND PASSAGE OF CHRONIC WASTING DISEASE (CWD(MULE DEER)) AGENT TO CATTLE

Author item Hamir, Amirali item Kunkle, Robert item MILLER, JANICE item Greenlee, Justin item Richt, Juergen

Submitted to: Journal of Comparative Pathology Publication Type: Peer Reviewed Journal Publication Acceptance Date: 7/25/2005 Publication Date: 1/1/2006

Citation: Hamir, A.N., Kunkle, R.A., Miller, J.M., Greenlee, J.J., Richt, J.A. 2006. Experimental second passage of chronic wasting disease (CWD(mule deer)) agent to cattle. Journal of Comparative Pathology. 134(1):63-69.

Interpretive Summary: To compare the findings of experimental first and second passage of chronic wasting disease (CWD) in cattle, 6 calves were inoculated into the brain with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but the CWD agent was detected in their CNS tissues by 2 laboratory techniques (IHC and WB). These findings demonstrate that inoculated cattle amplify CWD agent but also develop clinical CNS signs without manifestation of microscopic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, namely, sheep scrapie. The current study confirms previous work that indicates that the diagnostic tests currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of microscopic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.

Technical Abstract: To compare clinicopathological findings of first and second passage of chronic wasting disease (CWD) in cattle, a group of calves (n=6) were intracerebrally inoculated with CWD-mule deer agent previously (first) passaged in cattle. Two other uninoculated calves served as controls. Beginning 10-12 months post inoculation (PI), all inoculates lost appetite and lost weight. Five animals subsequently developed clinical signs of central nervous system (CNS) abnormality. By 16.5 months PI, all cattle had been euthanized because of poor prognosis. None of the animals showed microscopic lesions of spongiform encephalopathy (SE) but PrPres was detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify CWD PrPres but also develop clinical CNS signs without manifestation of morphologic lesions of SE. This situation has also been shown to occur following inoculation of cattle with another TSE agent, scrapie. The current study confirms previous work that indicates the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) in the U.S. would detect CWD in cattle, should it occur naturally. Furthermore, it raises the possibility of distinguishing CWD from BSE in cattle due to the absence of neuropathologic lesions and a unique multifocal distribution of PrPres, as demonstrated by IHC, which in this study, appears to be more sensitive than the WB.


FRIDAY, AUGUST 27, 2021 

Cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions


Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


FDA Reports on VFD Compliance

John Maday

August 30, 2019 09:46 AM VFD-Form 007 (640x427)

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday )

Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary.

On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


Overall, the FDA reports a high level of compliance across the affected livestock-industry sectors.

In fiscal year 2016, FDA began a small, three-part pilot inspection program that began with inspectors visiting feed distributors to review randomly selected VFD documents. The inspectors then selected one VFD at the distributor and conducted further inspections of the veterinarian and producer (client) named on that VFD.

In fiscal years 2017 and 2018, FDA continued those three-part inspections and expanded the program to include state feed regulatory partners. In fiscal year 2017, state personnel inspected VFD distributors and reviewed selected VFDs for compliance with the requirements. In 2018, those state inspectors began conducting three-part inspections, similar to those conducted by the FDA investigators. With state inspectors contributing, the number of VFD inspections increased from 57 in 2016 to 130 in 2017 and 269 during 2018.

Of the 269 inspections during 2018, 230 required no action, 38 indicated voluntary action and just one indicated official enforcement action.

Key findings in the report include:

Distributors (2018)

Distributor had notified FDA of their intent to distribute VFD feeds -- 94.8%

Distributors who distributed a VFD feed that complied with the terms of the VFD -- 91.5%

Distributors who manufacture VFD feed: Drug inventory or production records showed the correct amount of drug was added to the feed for the VFD reviewed -- 96.7%

Distributors who manufacture VFD feed: Labels and formulas matched the VFD reviewed -- 91.0%

Distributor’s VFD feed labels contained the VFD caution statement -- 77.2%

Veterinarians

Veterinarians had an active license in the state where the VFD feed authorized on the VFD order(s) is being fed -- 100%

VFDs included veterinarians’ electronic or written signature -- 98.6%

VFDs included the withdrawal time, special instructions, and/or cautionary statements -- 95.3%

Producers

Client did not feed VFD feed beyond the expiration date on the VFD -- 100%

Client fed VFD feed to the animals authorized on the VFD (number, species, and/or production class) -- 100%

Client fed VFD feed for the duration identified on the VFD -- 100%

Client complied with the special instructions on the VFD -- 100%

FDA issued just one warning letter following inspections during fiscal year 2018, for a feed mill that “adulterated and misbranded VFD feed by distributing VFD feed to other distributors without first receiving an acknowledgment letter, in addition to adulterating and misbranding medicated and non-medicated feed for other reasons.”

In its report, FDA reminds stakeholders that VFD medicated feeds must be used in according to the approved conditions of use and must be under the oversight of a licensed veterinarian and consistent with a lawful VFD order. The agency intends to continue monitoring compliance, and to provide education, but FDA will also use enforcement strategies when voluntary compliance with the VFD final rule requirements is not achieved.

See the full summary report from FDA.


For more on the VFD rules and compliance, see these articles from BovineVetOnline.com.

VFD Audits: What to Expect


VFD Audits: Start with the Feed Distributor


FDA Draft Guidance Updates VFD Q&A







SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

***> EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 

THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


3.2.1.2 Non‐cervid domestic species

The remarkably high rate of natural CWD transmission in the ongoing NA epidemics raises the question of the risk to livestock grazing on CWD‐contaminated shared rangeland and subsequently developing a novel CWD‐related prion disease. This issue has been investigated by transmitting CWD via experimental challenge to cattle, sheep and pigs and to tg mouse lines expressing the relevant species PrP.

For cattle challenged with CWD, PrPSc was detected in approximately 40% of intracerebrally inoculated animals (Hamir et al., 2005, 2006a, 2007). Tg mice expressing bovine PrP have also been challenged with CWD and while published studies have negative outcomes (Tamguney et al., 2009b), unpublished data provided for the purposes of this Opinion indicate that some transmission of individual isolates to bovinised mice is possible (Table 1).

In small ruminant recipients, a low rate of transmission was reported between 35 and 72 months post‐infection (mpi) in ARQ/ARQ and ARQ/VRQ sheep intracerebrally challenged with mule deer CWD (Hamir et al., 2006b), while two out of two ARQ/ARQ sheep intracerebrally inoculated with elk CWD developed clinical disease after 28 mpi (Madsen‐Bouterse et al., 2016). However, tg mice expressing ARQ sheep PrP were resistant (Tamguney et al., 2006) and tg mice expressing the VRQ PrP allele were poorly susceptible to clinical disease (Beringue et al., 2012; Madsen‐Bouterse et al., 2016). In contrast, tg mice expressing VRQ sheep PrP challenged with CWD have resulted in highly efficient, life‐long asymptomatic replication of these prions in the spleen tissue (Beringue et al., 2012).

A recent study investigated the potential for swine to serve as hosts of the CWD agent(s) by intracerebral or oral challenge of crossbred piglets (Moore et al., 2016b, 2017). Pigs sacrificed at 6 mpi, approximately the age at which pigs reach market weight, were clinically healthy and negative by diagnostic tests, although low‐level CWD agent replication could be detected in the CNS by bioassay in tg cervinised mice. Among pigs that were incubated for up to 73 mpi, some gave diagnostic evidence of CWD replication in the brain between 42 and 72 mpi. Importantly, this was observed also in one orally challenged pig at 64 mpi and the presence of low‐level CWD replication was confirmed by mouse bioassay. The authors of this study argued that pigs can support low‐level amplification of CWD prions, although the species barrier to CWD infection is relatively high and that the detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.


TUESDAY, JUNE 8, 2021 

***> Bovine spongiform encephalopathy: the effect of oral exposure dose on attack rate and incubation period in cattle


***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.

ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$

THURSDAY, JULY 8, 2021

EFSA Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie


MONDAY, JUNE 28, 2021 

BSE can propagate in sheep co‑infected or pre‑infected with scrapie


THURSDAY, DECEMBER 31, 2020 

Autoclave treatment of the classical scrapie agent US No. 13-7 and experimental inoculation to susceptible VRQ/ARQ sheep via the oral route results in decreased transmission efficiency


WEDNESDAY, MAY 29, 2019 

***> Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures 

USDA HERE'S YOUR SIGN!


SATURDAY, AUGUST 16, 2008

Qualitative Analysis of BSE Risk Factors in the United States February 13, 2000 at 3:37 pm PST (BSE red book)


WEDNESDAY, MARCH 24, 2021 

USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA


WEDNESDAY, DECEMBER 2, 2020

EFSA Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates EFSA Panel on Biological Hazards (BIOHAZ) ADOPTED: 21 October 2020

i wonder if a 7 month delay on a suspect BSE case in Texas is too long, on a 48 hour turnaround, asking for a friend???


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


WEDNESDAY, DECEMBER 23, 2020


BSE research project final report 2005 to 2008 SE1796 SID5

***>As a result, using more sensitive diagnostic assays, we were able to diagnose BSE positive cattle from the years 1997-1999 inclusive that were originally negative by vacuolation.  From these data we have estimated that approximately 3% of the total suspect cases submitted up until the year 1999 were mis-diagnosed. 

YOU know, Confucius is confused again LOL, i seem to have remembered something in line with this here in the USA...

BSE research project final report 2005 to 2008 SE1796 SID5




PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

http://www.plosone.org/annotation/listThread.action?root=86610

THURSDAY, AUGUST 19, 2021 

TME to cattle equal atypical L-type BSE USA, madcow origin, what if?


Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)


2009 UPDATE ON ALABAMA AND TEXAS MAD COWS 2005 and 2006


***> Wednesday, January 23, 2019 

***> CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019 <***


TUESDAY, JANUARY 5, 2021 

Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy


FRIDAY, FEBRUARY 12, 2021 

Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes


WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al


THURSDAY, FEBRUARY 4, 2021 

Guidance for reporting 2021 surveillance data on Transmissible Spongiform Encephalopathies (TSE) 

APPROVED: 1 February 2021


SUNDAY, SEPTEMBER 5, 2021 

Recognition of the Bovine Spongiform Encephalopathy Risk Status of Members Adapted Procedure, May 2020


WEDNESDAY, APRIL 24, 2019 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019


Saturday, July 23, 2016

BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016


Tuesday, July 26, 2016

Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016


Monday, June 20, 2016

Specified Risk Materials SRMs BSE TSE Prion Program


Volume 26, Number 8—August 2020 

Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993–2018 high proportion of physicians with sCJD were surgeons


THURSDAY, JULY 02, 2020 

Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure


I kindly would like to bring to everyone's attention;

***> 6 Includes 39 case in which the diagnosis is pending (1 from 2018, 1 from 2019, 1 from 2020 and 19 from 2021), and 19 inconclusive cases; 

WOW, 2021 is showing 19 cases where the diagnosis is pending, and 19 inconclusive cases, what's that all about???

***> 7 Includes 33 (33 from 2021) cases with type determination pending in which the diagnosis of vCJD has been excluded. 

HOLEY COW, WITH 33 ADDITIONAL CASES FROM 2021, WITH TYPE DETERMINATION PENDING, IN WHICH DIAGNOSIS OF VCJD HAS BEEN EXCLUDED, WHAT'S ALL THAT ABOUT??? 

***> 8 The sporadic cases include 4158 cases of sporadic Creutzfeldt-Jakob disease (sCJD), 76 cases of Variably Protease-Sensitive Prionopathy (VPSPr) and 35 cases of sporadic Fatal Insomnia (sFI). 

HOLEY SMOKES, VPSPR CASES SEEM TO BE RISING, no one with a clue if it's zoonotic from cwd, atypical bse, scrapie, iatrogenic there from, or all of the above, take your pick, but with Canada having this outbreak of an neurological disorder similar to cjd, but yet, unlike anything they have seen, and cjd ruled out, yet still no answers, and all these cases of TYPE DETERMINATION PENDING IN THE USA, IN WHICH NVCJD HAS BEEN RULED OUT, AND VPSPR, WHAT'S GOING ON HERE?? WHAT THE HELL IS GOING ON???

IATROGENIC, IATROGENIC, IATROGENIC. 

LET'S COMPARE TO LAST REPORTS HERE;

USA Tables of Cases Examined National Prion Disease Pathology Surveillance Center Cases Examined¹ Updated quarterly.

Last updated on: October 8th, 2020

Year Total Referrals² Prion Disease Sporadic Familial Iatrogenic vCJD

1999 & earlier 382 231 200 27 3 0

2000 145 102 90 12 0 0

2001 209 118 110 8 0 0

2002 241 144 124 18 2 0

2003 259 160 137 21 2 0

2004 316 181 164 16 0 1³

2005 327 178 156 21 1 0

2006 365 179 159 17 1 2⁴

2007 374 210 191 19 0 0

2008 384 221 205 16 0 0

2009 397 231 210 20 1 0

2010 401 246 218 28 0 0

2011 392 238 214 24 0 0

2012 413 244 221 23 0 0

2013 416 258 223 34 1 0

2014 355 208 185 21 1 1⁵

2015 401 263 243 20 0 0

2016 396 277 248 29 0 0

2017 375 266 247 19 0 0

2018 309 223 204 18 1 0

2019 422 274 252 21 0 0

2020 252 159 125 11 1 0

TOTAL 75316 46117 41268 4439 14 4

1Listed based on the year of death or, if not available, on the year of referral; 

2Cases with suspected prion disease for which brain tissue was submitted; 

3Disease acquired in the United Kingdom; 

4Disease acquired in the United Kingdom in one case and in Saudi Arabia in the other; 

5Disease possibly acquired in a Middle Eastern or Eastern European country; 

6Includes 12 cases in which the diagnosis is pending, and 19 inconclusive cases; 

7Includes 24 (1 from 1986, 1 from 2019, 22 from 2020) cases with type determination pending in which the diagnosis of vCJD has been excluded. 

8The sporadic cases include 4020 cases of sporadic Creutzfeldt-Jakob disease (sCJD), 71 cases of Variably Protease-Sensitive Prionopathy (VPSPr) and 35 cases of sporadic Fatal Insomnia (sFI). 

9Total does not include 277 Familial cases diagnosed by blood test only.


snip...see full text;


Thursday, October 28, 2021 

Chronic Wasting Disease (CWD) TSE Prion Zoonosis, friendly fire, iatrogenic transmission, blood products, sporadic CJD, what if?

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: 

In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally. 

Terry S. Singeltary, Sr Bacliff, Tex 

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 


sadly, our federal government has made it legal now to trade Transmissible Spongiform Encephalopathy TSE Prion disease from state to state, country to country, it's called TSE Prion Poker, and we are all in...

Terry S. Singeltary Sr.


0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home