SCRAPIE USA

Transmissible Spongiform Encephalopathy TSE Prion PrP sheep and goats

My Photo
Name:
Location: BACLIFF, Texas, United States

My mother was murdered by what I call corporate and political homicide i.e. FOR PROFIT! she died from a rare phenotype of CJD i.e. the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. sporadic, simply meaning from unknown route and source. I have simply been trying to validate her death DOD 12/14/97 with the truth. There is a route, and there is a source. There are many here in the USA. WE must make CJD and all human TSE, of all age groups 'reportable' Nationally and Internationally, with a written CJD questionnaire asking real questions pertaining to route and source of this agent. Friendly fire has the potential to play a huge role in the continued transmission of this agent via the medical, dental, and surgical arena. We must not flounder any longer. ...TSS

Friday, November 25, 2022

USA National Scrapie Eradication Program (NSEP) 2021 to 2003 A Year by Year Review

USA National Scrapie Eradication Program (NSEP) 2021 to 2003 A Year by Year Review

National Scrapie Eradication Program (NSEP) FY 2021 End of Year Scrapie Report 06/06/2022 09:10 AM EDT

National Scrapie Eradication Program (NSEP)

FY 2021 End of Year Scrapie Report

The Annual Report for FY 2021 is available on the USDA APHIS VS website.

Highlights of the End of Year Report

One sheep sampled at slaughter in January of FY 2021 tested positive for classical scrapie. Veterinary Services identified one new infected herd/flock, associated with this sheep. One sheep flock remains under quarantine with an open infected status since 2016.

Veterinary Services and its cooperators sampled 30,238 animals for scrapie testing in FY 2021.

21,971 from sheep and 8,267 from goats

28,479 from slaughter surveillance and 1,759 from on-farm testing.

The annual target to test at least 40,000 animals for scrapie was not met, primarily due to the negative impacts of COVID-19 on the ability to collect samples. To account for these COVID impacts, the State sampling minimums to maintain their consistent status were reduced to 74% of the State sampling minimum established at the beginning of the year.

Resources

To report a sheep or goat with clinical signs of scrapie, please contact your local VS office or State Veterinarian’s office. APHIS will pay indemnity for adult sheep or goats with neurological or other signs or that are determined to be consistent with scrapie. Alternatively, an APHIS veterinarian will provide live animal scrapie testing for these animals.

To learn more about scrapie, the disease, and the national scrapie eradication program, visit the APHIS VS Scrapie Website.


snip...

Program Summary*

Performance Measures - The percent of cull black-faced sheep found positive at slaughter (Chart 1) was 0.0145%in fiscal year (FY) 2021, and the percent of cull sheep found positive at slaughter adjusted for face color1 was 0.0021%in FY 2021 (Chart 2).

Positive Animals – One sheep sampled at slaughter in January of FY 2021 tested positive for classical scrapie. This sheep had resided in a flock in Wisconsin, and VS attributed the flock of origin to Arkansas; it was not completely traceable due to lack of identification to flock of origin. In October of FY 2021, one sheep tested positive at slaughter for non-classical scrapie (Nor98-like).

States that have been free of classical scrapie cases for >7 Fiscal Years

Sheep: 41 states (Figure 1 and Figure 2)

Goats: 47 states (Figure 3 and Figure 4)

*106 FY 2021 samples are pending testing; report will be updated if necessary

1White, black and mottled-faced color sheep are weighted based on population; white-faced sheep have the greatest weight. If a white-faced positive sheep is found, this statistic will markedly increase. See notes below for details. 

Program Summary*

Infected and Source Flocks - One infected herd/flock, located in Wisconsin, was identified in FY 2021. One flock in Texas has had an open infected status since April 2016, but there are no exposed animals on the premises. Animals designated for testing must be sampled and valid test results obtained before the status can be closed.

The number of newly designated infected and source flocks by fiscal year since FY 1997 is shown in Chart 3. The peak was in FY 2005 with 179 flocks. 

Program Summary*

Scrapie in Goats –The total number of NVSL confirmed positive cases in goats is 44 since FY 2002. Samples from three of these positive animals were collected through RSSS, one in November 2014, the second in July 2018, and the most recent in June 2019. The remainder of the positive cases have been found though testing of clinical suspects, testing of exposed animals, and trace-out investigations.

Scrapie Free Flock Certification Program (SFCP) – At the end of the FY 2021, there were 200 flocks participating in the Scrapie Free Flock Certification Program (SFCP). Statuses of these flocks were 31 export monitored, 43 export certified, and 126 select monitored flocks (Figure 5). SFCP open statuses by fiscal year of Status date2 from FY 2007 to FY 2020 are depicted in Chart 4.

*106 FY 2021 samples are pending testing.

2Chart 4 represents the cumulative change in SFCP enrollment over time, and includes open and closed statuses/programs, and active and inactive flocks/herds. Previous charts of SFCP participation by year were manually updated and used the enrollment date to determine the year of participation in SFCP. With the change to Tableau charts, the start/status date is used. Many participating flocks were grandfathered into the Export category in 2013 with an earlier status date.

Surveillance

Surveillance activities are reported by Field Operations Districts shown in Figure 6. Surveillance minimums are based on estimated breeding sheep and goat populations in each State, and the distribution of sheep and goat populations by District is shown in Chart 5.

Components of Scrapie Surveillance

• Regulatory Scrapie Slaughter Surveillance (RSSS) started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. 

As of the end of FY 2021, samples have been collected from 701,245 animals since April 1, 2003. 

28,479 samples were collected in FY 2021, 21,070 from sheep and 7,409 from goats.3 

There have been 491 NVSL confirmed positive animals (474 classical cases – 471 sheep and 3 goats) and 17 Nor98- like cases since the beginning of RSSS. One sheep tested positive for classical scrapie in FY 2021.* Figure 6 depicts RSSS collection sites in FY 2021.

*106 FY 2021 samples are pending testing.

3Total sampling is decreased primarily due to the negative impacts of COVID-19 on the ability to collect samples.

Surveillance

Components of Scrapie Surveillance

• RSSS Genotyping started in November 2018 as a pilot project to decrease the costs of scrapie IHC testing in a subset of submission by only testing those animals that are genetically susceptible to scrapie. DNA is first analyzed to determine the genotype at codon 171, and tissue samples are only IHC tested if the sheep is genetically susceptible, not if it is genetically resistant/less susceptible (QR, RR, RK, or RH). The number of genotyped sheep is included in the total number of sheep tested through RSSS. To date, no samples from genetically susceptible sheep referred for scrapie testing have tested positive. The project was deemed in May 2021 to result in cost savings and RSSS genotyping will be continued indefinitely at the currently participating sites.

• In FY 2019 and 2020, a total of 5,191 sheep were genotyped; 3,660 (70.5%) of these were not genetically susceptible.

• In FY 2021, 2,874 sheep were genotyped; 2,149 (74.8%) of these were not genetically susceptible.

The number of sheep and goats collected in each District for RSSS is shown in Chart 6.

Figure 7 is a hex map, representing the number of animals collected in each State.

Chart 7 compares RSSS sampling by month for the current year with the monthly average of the previous 6 years. 

Surveillance

Components of Scrapie Surveillance (continued)

• On-farm Surveillance includes both regulatory testing of scrapie exposed and potentially exposed sheep and goats and testing sheep and goats on farm for routine surveillance. 901 sheep and 858 goats were tested on-farm in FY 2021. No animals tested positive.* Surveillance Goals

The annual target is to test at least 40,000 animals for scrapie. Negative impacts of COVID-19 on the ability to collect samples contributed to not meeting this target. 30,238 animals were sampled for scrapie testing in FY 2021.

• 28,479 RSSS samples and 1,759 on-farm samples

• Of which 21,971 were sheep and 8,267 were goats.

Progress towards meeting the national surveillance target is depicted in Chart 8. Distribution of sampling by type (RSSS or on-farm) and by species is shown in Chart 9. Chart 10 and Table 1 is a breakdown by face-color (sheep) and type (goats) by age. Chart 11 shows samples collected at slaughter by fiscal year by species and face-color (sheep).

*106 FY 2021 samples are pending testing

Surveillance

State Sampling Minimums

The National Scrapie Eradication Program establishes annual sheep and goat sampling minimums for each State and tracks the States’ level of compliance with meeting these minimums. These State minimums were implemented in FY 2010 to ensure adequate geographical representation, so that APHIS can find the last remaining cases and document freedom from scrapie. State sampling minimums are established based on the population demographics of mature sheep and goats in each State. To account for the impacts of COVID on the ability of personnel to collect samples, the State sampling minimums were reduced to 74% of the State sampling minimum projected at the beginning of the year. The calculations used to derive the sampling minimums are described in the National Scrapie Surveillance Plan. The COVID-adjusted State sampling minimums for sheep and goats, and the total number of animals sampled by State of Animal ID, are listed by District in Tables 2, 3, 4, and 5. 

The percent sampling minimum for sheep and goats achieved by each State in FY 2021 are depicted in Figure 8 and Figure 9. 

Surveillance

Surveillance option for meeting state minimums

Historically, several States have had difficulty meeting their annual sampling requirement. Starting in FY 2018, these States were able to increase and, in most cases, meet the sampling minimum by identifying sheep producers or dealers for genotyping of codon 171 prior to liveanimal testing (rectal biopsy) of the genetically susceptible (primarily QQ, also KK, QH, QK) animals. Genotyping is done to reduce the costs associated with live-animal testing. The susceptible sheep that were live-animal tested and the genetically less susceptible (QR, RK, or RH) and genetically resistant (RR) sheep were credited to the State. Under this option, 609 sheep were genotyped during FY 2021; 167 of these had genotypes considered susceptible (27.4%). None of the susceptible animals that were live-animal tested were positive. In all, 442 sheep with genotypes considered resistant were credited to States.

Sheep sampled on producer premises that had tags originating in a different State were credited to both the State of origin and the State where sampling occurred; if sampling occurred on a dealer premises they were credited only to the State of origin. These additional samples are included in the Total Number of Sheep Sampled column of Districts Tables (Tables 2 through 7), and in the calculations for the hex maps showing the percent of sampling minimum achieved (Figures 6 and 7). These genotyped animals are not included in any other charts in this report.

Surveillance

Surveillance Stages

Surveillance objectives for scrapie will be addressed in three stages:

• Stage 1. Eradicate scrapie in the U.S. sheep & goat population by finding remaining cases.

• Stage 2. Continue high-level surveillance to ensure that no cases remain.

• Stage 3. Maintain sufficient ongoing monitoring to meet World Organisation for Animal Health (OIE) requirements.

A sampling rate of 6/1000 breeding ewes or does is used for stage 1 minimums, and a sampling rate of 4/1000 breeding ewes or does is used for stage 2 minimums.

For Stage 1 states to be eligible to progress to Stage 2 they must achieve 90% or more of their annual state minimums for 4 out of the past 5 years and not have had a positive scrapie case for a minimum of 7 years.

Figure 10 and Figure 11 show the sampling stage of each state for sheep for FY 2021 and FY 2022 respectively.

For goats, the sampling minimum was set at stage 2 sampling levels in order to allow time for implementation of goat ID requirements. Any state that has a positive goat going forward will be moved to stage 1. 

Conclusion

• Meeting sampling minimums was challenging for states due to COVID-19 impacts on ability of personnel to collect samples

• Most states met COVID-19 adjusted sampling minimums for sheep and goats

• The remainder of this report contains figures, tables, and charts to accompany the previous slides

snip...

In October of FY 2021, one sheep tested positive at slaughter for non-classical scrapie (Nor98-like). 

and 17 Nor98- like cases since the beginning of RSSS.

Does not include Nor98-like scrapie cases found through RSSS 

snip...



see full report here;

National Scrapie Eradication Program Fiscal Year 2021 Report October 1, 2020 to September 30, 2021 U.S. Department of Agriculture Animal and Plant Health Inspection Service Veterinary Services Strategy and Policy Unit Sheep and Goat Health Center Prepared January 5, 2022


Greetings USDA/APHIS, et al, 

FIRST OFF, this COVID excuse for everything is getting old, USDA/APHIS et al decided long before covid to reduce the numbers of BSE testing to figures so small (below OIE minimal), that it would take a mad cow stumbling up to the news camera to finally be detected.

WE will review the infamous USDA Harvard BSE ENHANCED BSE SUPRESSED PROGRAM at the bottom of this US Scrapie report.

WELL, it looks like my pleading with USDA/APHIS et al to please include a MAP FOR ATYPICAL NOR98 Scrapie continues to fall on deaf ears, no such thing going to happen. 

seems the USDA/APHIS et al continue to try and bury scientific facts on the atypical Scrapie and continue to help spread Scrapie to our trading partners on a whelm or a myth, that atypical Scrapie is not transmissible, and this is WRONG! 

also, let's take a look at previous pre-Covid excuse for NOT testing in sufficient numbers to detect a TSE Prion, like what the USDA/APHIS et al use to keep mad cow figures limited to a nothing. 

you don't test in high enough numbers to find, you will NOT FIND, BSE, Scrapie, or CWD, or CPD as far as that goes. 

let's review this shall we, and the zoonosis potential from both typical and atypical Scrapie.

please pay attention also to the CWD reports as well in each of the USAHA yearly reports.

A FEW COMMENTS PLEASE ON THE FOLLOWING ;

***>The annual target to test at least 40,000 animals for scrapie was not met, primarily due to the negative impacts of COVID-19 on the ability to collect samples. To account for these COVID impacts, the State sampling minimums to maintain their consistent status were reduced to 74% of the State sampling minimum established at the beginning of the year.<***

***>In October of FY 2021, one sheep tested positive at slaughter for non-classical scrapie (Nor98-like). 

***> and 17 Nor98- like cases since the beginning of RSSS.

***> Does not include Nor98-like scrapie cases found through RSSS 

SNIP...END

Scrapie USA 2019


***> PRE-COVID USDA SCRAPIE TESTING 2018 to 2003 <***

National Scrapie Eradication Program 

September 2018 Monthly Report Fiscal Year 2018 

U.S. Department of Agriculture Animal and Plant Health Inspection Service Veterinary Services Surveillance, Response and Preparedness Services Sheep and Goat Health Program 

October 15, 2018

Scrapie Program Update February 2018

snip...

Positive Animals –In August, a Pennsylvania goat sampled at slaughter in July was confirmed positive for classical scrapie. 

The only other positive goat found through slaughter surveillance was in November 2014. 

In April, APHIS identified scrapie in a 171 RR sheep from a flock in NC. There was insufficient positive tissue available to rule out non-classical scrapie; no other sheep in the flock have tested positive for scrapie.

USDA continues to conduct additional testing, before determining whether to classify the case as classical scrapie. One Nor98-like case was reported in October 2017.

*White, black and mottled-faced color sheep are weighted based on population; white-faced sheep have the greatest weight. If a white-faced positive sheep is found, this statistic will markedly increase. See notes below for details.

**Samples collected between October 1, 2017 and September 30, 2018 and confirmed by October 15, 2018.

snip...

Program Summary

Infected and Source Flocks - The RSSS positive goat confirmed in August 2018 was traced to a Pennsylvania herd that has sheep and goats. The herd was designated as a source flock in September (Chart 3). Two other flocks, one in Colorado and one in Texas, have open statuses, but there are no exposed animals on the premises of these flocks. Cleaning and disinfection of these premises has to be completed before the infect or source status can be closed.

Scrapie in Goats – Two positive goats have been found through RSSS since the beginning of the program in 2003. Samples from the first one were collected in November 2014; samples from the second were collected in July 2018. This most recent positive case brings the total number of NVSL confirmed positive cases in goats to 42. Figure 1 shows the number of positive cases by State and by fiscal year of last reported case. 

snip...

Components of Scrapie Surveillance

• Regulatory Scrapie Slaughter Surveillance (RSSS) started April 1, 2003. 

It is a targeted slaughter surveillance program which is designed to identify infected flocks.

Samples have been collected from 601,697 animals since April 1, 2003. 

There have been 485 NVSL confirmed positive animals (472 classical cases, 12 Nor98-like cases, and 1 pending designation) since the beginning of RSSS. 

As of September 30, 2018, 41,389 samples have been collected in FY 2018, 32,811 from sheep and 8,578 from goats. 

A positive case in a sheep was confirmed in April and is pending designation as classical or non-classical scrapie. 

Samples collected from a goat in July were confirmed as classical scrapie. 

The number of sheep and goats collected in each District is shown in Chart 6. Figure 4 is a hex map, representing the number of animals collected in each State. 

Chart 7 compares RSSS sampling by month for the current year with the monthly average of the previous 4 years. 


***>PLEASE NOTE THE APHIS USDA URL LINKS FOR EACH REPORT DO NOT WORK, just the way they have it set up. these reports are from my files when the url links were working. the USAHA LINKS WORK! BE SURE TO CHECK OUT CWD REPORTS AS WELL ON USAHA REPORTS...



 


=====

National Scrapie Eradication Program May 2017 Monthly Report Fiscal Year 2017

U.S. Department of Agriculture

Animal and Plant Health Inspection Service

Veterinary Services

Surveillance, Response and Preparedness Services

Sheep and Goat Health Program

June 15, 2017

snip...

Positive Cases and Infected/Source Flocks 

Positive Scrapie Cases* 

No classical scrapie cases have been reported in FY 2017. The last classical case was reported in April 2016. 

Since 2002, the total number of positive cases in goats is 41; the last goat case was reported in February 2015. Figure 1 shows the number of positive cases by State and by fiscal year of last reported case. 

Infected and Source Flocks 

As of May 31, 2017, there were two open infected and source flock statuses for classical scrapie 

Figure 2). One flock was designated as a Nor98-like source flock in October 2016 as a result of a sheep sampled in September 2016 that tested positive. 

* Samples collected between October 1, 2016 and May 31, 2017 and confirmed by June 15, 2017.

Program Summary 

At the end of FY 2016, the percent of cull black face sheep found positive at slaughter was 0.01 percent (Chart 1) a 99 percent decrease compared to FY 2003. At the end of FY 2016, the percent of cull sheep found positive at slaughter and adjusted for face color* was 0.001 percent (Chart 2). As of May 31, 2017, no animals have tested positive for classical scrapie in FY 2017. 

Two infected and three source flocks were designated in FY 2016 (Chart 3). No classical scrapie infected or source flocks have been designated in FY 2017. One flock was designated as a Nor98-like source flock in October 2016 based on a sample submitted at the end of FY 2016. 

Epidemiological studies indicate that Nor98-like scrapie is either not transmissible or poorly transmissible under natural conditions. Further, the World Organization for Animal Health (OIE) has determined that Nor98-like scrapie is distinct from classical scrapie and is not a listed disease of trade concern. Animals in Nor98-like scrapie infected flocks are not removed and are free to move once they have been officially identified. 

Only one positive goat (FY 2015) has been found through RSSS since the start of RSSS in 2003. Based on all goats sampled at slaughter, the prevalence of scrapie in U.S. cull goats is 0.002 percent with an upper 95 percent confidence limit of 0.004 percent. * See slide 4 for an explanation of adjusted weights. Note: The number of animals sampled annually only allows accurate measurement to about 0.01 percent for the overall rate and about 0.03 percent for when face color is broken out separately, so the changes in the prevalence values smaller than 0.01 or 0.03 percent respectively are within the error of the measure.


***>PLEASE NOTE THE APHIS USDA URL LINKS FOR EACH REPORT DO NOT WORK, just the way they have it set up. these reports are from my files when the url links were working. the USAHA LINKS WORK! BE SURE TO CHECK OUT CWD REPORTS AS WELL ON USAHA REPORTS...




''Epidemiological studies indicate that Nor98-like scrapie is either not transmissible or poorly transmissible under natural conditions. Further, the World Organization for Animal Health (OIE) has determined that Nor98-like scrapie is distinct from classical scrapie and is not a listed disease of trade concern. Animals in Nor98-like scrapie infected flocks are not removed and are free to move once they have been officially identified.''

LMAO! CAN YOU SAY USDA, OIE, TRADE AND MONEY $$$ 

J Vet Med Sci. 2016 Oct; 78(10): 1619–1624. Published online 2016 Jun 20. doi: 10.1292/jvms.16-0259 PMCID: PMC5095634 

Transmission of atypical scrapie to homozygous ARQ sheep 

SNIP...END

National Scrapie Eradication Program
 
April 2016 Monthly Report
 
Fiscal Year 2016
 
U.S. Department of Agriculture
 
Animal and Plant Health Inspection Service
 
Veterinary Services
 
Surveillance, Preparedness and Response Services
 
Sheep and Goat Health Program
 
May 15, 2016
 
snip...
 
Surveillance
 
Regulatory Scrapie Slaughter Surveillance (RSSS)
 
RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. 

Samples have been collected from 503,973 animals since April 1, 2003. 

There have been 479 NVSL confirmed positive animals* (471 classical cases and 8 Nor98-like cases) since the beginning of RSSS. 

As of April 30, 2016, 21,371 samples have been collected in FY 2016, 16,854 from sheep and 4,517 from goats.
 
As of April 30, 2016, one black-faced sheep* tested positive for scrapie in FY 2016. The weighted percentage of samples that have tested positive for each face color** from FY 2003 through FY 2016 is depicted in Chart 3a. In November 2013, administrative units within APHIS Veterinary Services reorganized from 2 Regions to 6 Districts (Figure 6). The distribution of sheep and goat populations by District is depicted in Chart 4a. The number of animals collected for FY 2016 by District where collected is shown in Chart 4b. A monthly comparison of RSSS collections by fiscal year is displayed in Chart 5. Chart 6is a retrospective 6-month rolling average of the percent positive, black-faced sheep sampled at RSSS collection sites.
 
* RSSS positives are reported based on collection date and may have been confirmed after April 30, 2016.
 
** White, black and mottled face color sheep are weighted based on population. White faced sheep have the highest weight, so when the uncommon white face positive sheep is found it will cause this statistic to increase.
 
snip...
 
Positive Cases and Infected/Source Flocks
 
Positive Scrapie Cases*
 
Thirteen positive cases have been reported in FY 2016. Eight of the cases were from a source flock that was designated in October because of an RSSS positive animal reported in September 2015. Location of the cases is shown in Table 1 and Figure 1, and distribution by face-color (sheep) and type (goats) is shown in Table 2.
 
The 2 positive goat cases found in FY 2015 increased the number of confirmed cases in goats since FY 2002 to 41 (Figure 2). No goats have tested positive in FY 2016.
 
Infected and Source Flocks
 
As of April 30, 2016, there were four flocks with an open infected or source status (Figure 3). Two infected and three source flocks have been designated in FY 2016 (Figure 4); two flocks have completed clean-up plans and have been released (Figure 5). New infected and source statuses from FY 1997 to FY 2016 are depicted in Chart 2.
 
* Samples collected between October 1, 2015 and April 30, 2016 and confirmed by May 15, 2016.
 



FRIDAY, APRIL 22, 2016 

Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer April 22, 2016


Thursday, June 09, 2016

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964 How Did CWD Get Way Down In Medina County, Texas?

DISCUSSION

Observations of natural outbreaks of scrapie indicated that the disease spread from flock to flock by the movement of infected, but apparently normal, sheep which were incubating the disease.

There was no evidence that the disease spread to adjacent flocks in the absent of such movements or that vectors or other host species were involved in the spread of scrapie to sheep or goats; however, these possibilities should be kept open...

snip...

Scrapie Field Trial was developed at Mission, Texas, on 450 acres of pastureland, part of the former Moore Air Force Base


EPIDEMIOLOGY OF SCRAPIE IN THE UNITED STATES

Academic Preg

James Hourriganl, Albert Klingsporn2, Edited by » Peast

W. W. Clark3, and M, de Camp4

United States Department of Agriculture,
Animal and Plant Health Inspection Service,
Veterinary Services

snip...

METHODS

A Scrapie Field Trial was developed at Mission, Texas,
to provide additional information for the eradication
program on the epidemiology of natural scrapie. The Mission
Field Trial Station is located on 450 acres of pastureland,
part of the former Moore Air Force Base, near Mission,

Texas. It was designed to bring previously exposed, and later
also unexposed, sheep or goats to the Station and maintain
and breed them under close observation for extended periods

to determine which animals would develop scrapie and define
more closely the natural spread and other epidemiological
aspects of the disease.

The 547 previously exposed sheep brought to the Mission
Station beginning in 1964 were of the Cheviot, Hampshire,
Montadale, or Suffolk breeds. They were purchased as field
outbreaks occurred, and represented 21 bloodlines in which
scrapie had been diagnosed. Upon arrival at the Station,
the sheep were maintained on pasture, with supplemental
feeding as necessary. The station was divided into 2 areas:

snip...


RESULTS

Table 1 indicated that previously exposed sheep brought to the Station at various times and ages (1 to 89 months old) included 333 Suffolks at risk. Of these, 98 (29%) developed scrapie. This demonstrated the necessity to slaughter such sheep to prevent further Spread of the disease, These pre- viously exposed Suffolks were bred at the Station and produced 446 progeny at risk. Of these 153 (34%) developed scrapie.

Although the minimum and average ages when scnapied were similar for both groups, some of the previously exposed Suffolks brought to the Station developed scrapie when much older--ewes 60 to 142 months old and rams 67 to 102 months old. O£ the 153 Suffolks born at the Station, only 3 were more than 60 months of age (65, 66, and 69 months old).

This difference in age scrapied was attributed to the fact that the Suffolks born at the Station may have been sub- ject to a greater exposure from birth.

It was also observed that when both dam and progeny were scrapied, the progeny nearly always developed clinical disease at a younger age than their respective dam. Thirty- two dams were scrapied at an average of 60 months of age. Forty-six of their progeny developed the disease at an average of 38 months (range 25 to 53 months). Thirty-seven of the 46 progeny were younger than the dam (average 20 months younger, range 2 to 99 months younger). Two were scrapied at the same age as their dams, and 8 were older (average 5 months, range 1 to 13 months older).

++. Although the incidence of scrapie was considerably Greater in the progeny of scrapied compared to free dams, the progeny of either scrapied or free dams manifested scrapie at the typical age and irrespective of the age their respective dams were scrapied. The differences in ages that dams and progeny were scrapied was believed due to difference of exposure, particularly whether they were exposed at an early age,

Table 2 summarized the data on exposed Suffolks and was Prepared so as to show scrapie incidence in the progeny of dams and sires of known Scrapie status. The scrapie incidence in the progeny of Free X Free parents was 25%, progeny of scrapied Sires 39%, and scrapied dams 42%. When both sire and dam were scrapied, the scrapie incidence in 18 Progeny at risk was 78%.

When the scrapie status of the sire was ignored, scrapie incidence in th- progeny of free dams was 34% and in pre y of scrapied da as 62%. When the scrapie status of the dam was ignored, scrapie incidence in the progeny of free sires was 26% and in the progeny of scrapied sires was 452.

Although the scrapie incidence was nearly double in the progeny of scrapied compared to free dams, the latter con- tributed a greater number of scrapied progeny, 116, compared to only 51 cases which had scrapied dams. This was because free dams made a considerably heavier contribution to the progeny at risk4-342 compared to 82. It was felt that in farm flocks a similar situation could exist.

It was possible that free dams could have been mis- classified; however, this was unlikely to have been significant, unless "nonclinical or carrier" dams exist. In this Suffolk group, the ages of 100 free dams of scrapied progeny ranged from 25 to 160 (average 97) months. These free dams did not show clinical signs of scrapie,”and there were no histopathological lesions suggesting scrapie in those which died, If one cannot classify as free, ewes which have reached 97 months (average) and did not develop the disease, from a practical standpoint, it is not possible to classify sheep as free, at least on the basis of clinical signs and histology. The free dams of 50% of the scrapied progeny were more than 100 months of age, averaging 126 months.

Upon arrival at the Mission Station at 3 to 9 months of age, the 140 previously unexposed sheep and goats were placed in infected pastures and corrals and were subjected to con- tact with a succession of natural cases of scrapie in sheep, and eventually also in goats. These animals were bred only within their respective groups and were not crossbred to other breeds of sheep or those brought to the Station from infected flocks or their progeny. The male or female animals mixed freely with animals of their respective sex of the infected Flock and were similarly identified and subjected to similar flock management and diagnostic procedures.

Table 3 indicated that natural scrapie had occurred in 5 of the 140 previously unexposed sheep. One case each occurred in Rambouillet, Targhee, and Hampshire ewes at 88, 89, and 89 months of age and in % Suffolk ewes at 73 and 102 months of age, and 85, 82, 80, 64, and 93 months following initial natural exposure. This represented a natural situation involving lateral spread, under the circumstances involved, when sheep were not exposed when very young. Scrapie was not detected clinicaliy or histologically in any of the dairy or Angora goats brought to the Station. The disease occurred in an average of 27% of the progeny of previously unexposed sheep or goats born at the Station and included cases in progeny of all breeds of sheep or goats taken there, The incidence in the progeny ranged from 14% in Rambouillet sheep to 61% in dairy goats. ~

These data showed that scrapie spread laterally, by contact exposure, from scrapied te previously free animals, but at an apparently lower rate when exposure was first received at the age of 3 to 9 months. These animals were presumed to be susceptible to the disease, as their progeny developed scrapie at rates and ages similar (on the average) to the progeny, pf previously exposed Suffolk sheep born and reared in the same environment.

It was suggested that the progeny of previously unexposed animals developed scrapie at a much higher rate than their parents, and at a younger age, because they were subjected to exposure from birth. The data did not rule out the possibility that the animals born at the Station could have also received the virus from their dams "vertically" prior te, at, or following birth.

Table 4 summarized the scrapie incidence in #he progeny, born at the Station, of previously unexposed dairy goats.

The data were prepared so as to show scrapie incidence in the progeny of dams and sires of known scrapie status.

The 58% incidence in the progeny (24 at risk) of Free X Free parents was more than twice the 25% seen in the Suffolk group (Table 2). Scrapied sires did not increase the incidence in goat progeny (it was 44%); scrapied dams increased the incidence to 71%. When both sire and dam were scrapied the incidence was 89%, with only 9 goat progeny at risk.

When the scrapie status of the sire was ignored, the scrapie incidence in the progeny of free dams was 56% and in the progeny of scrapied dams it was 74%.

Free dams contributed 34 progeny at risk and scrapied dams 31 progeny.

When the scrapie status of the dam was ignored, scrapie incidence was 64% in the progeny of free sires and a similar 66% in the progeny of scrapied sires.

A total of 244 sheep (127 Suffolk, 59 Rambouillet, and 58 Targhee) were removed from scrapie exposure within a few hours of birth or at 4, 9, or 20 months of age and placed in isolation pens. Removal of sheep from exposure at these ages was selected as being representative of usual flock operations when sheep might be sold from an infected flock at weaning, the first fall or the second fall after their birth.

Table 5 reflected the fate of such animals. Four of the 6 scrapied sheep which had been isolated at birth were Suffolks and the 2 older animals were Targhees. The first case in the group isolated at birth was a Targhee, progeny of a ewe that did not develop clinical scrapie. The scrapie incidence in 36 at risk Suffolks removed from exposure at birth was 11%, con- siderably less -“en that expected had these animals remz d in an infected en ment.

Table 6 reflected the status of 51 goats isolated from scrapie exposure at birth, and at 6, 8 to 10, 20, 32 to 59 and 60 to 82 months of age.

None of the goats removed at birth developed scrapie, although all 5 of those alive at 5 years of age had scrapied dams and 1 also had a scrapied sire. The sire of the remaining 4 had sired 7 scrapied progeny. Under such circumstances, had they remained in an infected environment nearly all of these goats would have been expected to develop scrapie. With the exception of the 20 month group, scrapie occurred at an incidence of 25 to 100% in ali other groups and at the expected age. A further observation was that 4 of the progeny of these dairy goats, born and kept apart from any sheep, developed scrapie which suggested that goats were not "dead- end hosts" insofar as scrapie was concerned.

Table 7 recorded the fate of progeny of certain selected scrapied or free Suffolk sheep or dairy goat dams.’

Suffolk ewe G298 was scrapied at 46 months of age. She had twin lambs in 1969 and 1 lamb in 1970. All 3 lambs developed scrapie. Suffolk ewe G27a was scrapied at 39 months. Her lamb born in 1966 was scrapied at 53 months; however, her lambs born in 1967 and 1968 remained free--lived to 102 months of age.

Suffolk ewe G25a died at 131] months of age and was nega- tive clinically and histologically. Mice remained negative following intracerebral inoculation of brain, spleen, and lymph nodes from this ewe. This ewe had 9 progeny at risk, of which 4 developed scrapie and 5 did not. There was no dis- cernible pattern to the cases. In two instances, 1 twin was scrapied and 1 remained free.

Goat B259 was scrapied when 43 months old. All of her 6 progeny at risk developed scrapie.

Goat B14a remained free and died at 101 months of age. Of her 11 progeny at risk, 7 were scrapied and 4 were not.

It was observed at the Station that when scrapied dams had several progeny at risk, 1 or more progeny usually developed the disease. However, many such scrapied dams also had progeny which lived, or are living, considerably beyond the age of their dams and beyond the age animals born at the Station manifested the disease.

It was also observed that individual free dams had free progeny in earlier years followed by scrapied progeny when they were older, or had scrapied progeny when young followed by free progeny when older, or scrapie and free progeny dis- persed throughout the dam's breeding life. The same situation occurred in progeny of scrapied dams; however, the pattern was less irregular due to the smaller number of progeny from each scrapied dam and the higher incidence of scrapie in such progeny. Circumstances prevented breeding all ewes ary year and, thus, many had only 1 progeny at risk. Scrapie developed in 100% of the single progeny at risk of 11 scrapied and 15 free dams. The 26 scrapied progeny were equally divided between ewes and rams.

Table 8 reflected the difference in age scrapied of - sheep brought to the Station compared to the age scrapied of those born there. Although the average age of previously exposed sheep (Suffolks) brought to the Station did not differ greatly from the overall average, several animals brought to the Station developed the disease at quite advanced ages. The previously unexposed scrapied animals brought to the Station were also considerably older than animals born there. Progeny of scrapied dams developed the disease at a slightly younger age than did progeny of free dams. The average age was nearly the same for males and females.

DISCUSSION

snip...see full text;




snip...PLEASE READ THE FULL REPORT ON THE SCRAPIE FIELD TRIAL EXPERIMENTS IN MISSION, TEXAS!!!





The monthly report for the National Scrapie Eradication Program for January 2016 is now available. The monthly reports are available in both PowerPoint and PDF formats.

Highlights of the August 2015 Report

As of January 31, 2016, 10 positive cases of classical scrapie have been confirmed in sheep in FY 2016. Nine of the ten cases are attributed to the same flock of birth.

No positive goat cases have been reported in FY 2016 as of January 31, 2016.

Announcement

On September 10, 2015 APHIS published a proposed rule in the Federal Register to amend the regulations for the National Scrapie Eradication Program. The comment period closed December 9, 2015. The Final Rule is being drafted. APHIS believes the update to the program will result in a more effective disease eradication program, with a more flexible approach to disease investigations and affected flock management and more consistent animal identification and recordkeeping requirements. More information is available on the APHIS VS Scrapie Website.

Resources

To report a sheep or goat with clinical signs of scrapie, please contact your local VS office.

To learn more about scrapie, the disease, and the national scrapie eradication program visit the APHIS VS Scrapie Website and www.eradicatescrapie.org.

https://eradicatescrapie.org/


SCRAPIE USDA APHIS June 2015 Monthly Report

From: Terry S. Singeltary Sr. Sent: Wednesday, July 29, 2015 9:45 PM To: BSE-L@LISTS.AEGEE.ORG Cc: Diane.L.Sutton@aphis.usda.gov ; cjdvoice@yahoogroups.com ; bloodcjd@yahoogroups.com Subject: SCRAPIE USDA APHIS June 2015 Monthly Report 

 INTRODUCTION - Positive Cases and Infected/Source Flocks

Positive Scrapie Cases*

Thirty two positive cases, 30 sheep and 2 goats, have been reported in FY 2015. The last positive case was reported in March 2015. Twenty six of the positive sheep were from the same source flock. Location of the cases is shown in Table 1 and Figure 1, and distribution by face-color (sheep) and type (goats) is shown in Table 2.

The 2 positive goat cases found in FY 2015 increases the number of confirmed cases in goats since FY 2002 to 41 (Figure 2).

Infected and Source Flocks

As of June 30, 2015, there were 4 flocks with an open source status (Figure 3). One infected and 3 source flocks have been designated in FY 2015 (Figure 4); 4 flocks completed a flock clean-up plan and were released (Figure 5). New infected and source statuses from FY 1997 to FY 2015 are depicted in Chart 2.

* Samples collected between October 1, 2014 and June 30, 2015 and confirmed by July 15, 2015.C

INTRODUCTION - Surveillance (Part 1)

Regulatory Scrapie Slaughter Surveillance (RSSS)

RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. Samples have been collected from 472,841 animals since April 1, 2003. There have been 477 NVSL confirmed positive animals* (469 classical cases and 8 Nor98-like cases) since the beginning of RSSS. As of June 30, 2015, 29,103 samples have been collected in FY 2015, 23,812 from sheep and 5,291 from goats.

As of June 30, 2015, 2 black-faced sheep** and 1 goat, have tested positive for scrapie in FY 2015; this is the first positive goat case found through RSSS. The last RSSS positive was reported in January 2015. The weighted percentage of samples from sheep that have tested positive for each face color from FY 2003 through FY 2015 is depicted in Chart 3***; percent positive goats are shown in Chart 3a. In November 2013, administrative units within APHIS Veterinary Services reorganized from 2 Regions to 6 Districts (Figure 6). The distribution of sheep and goat populations by District is depicted in Chart 4a. The number of animals collected for FY 2015 by District where collected is shown in Chart 4b. A monthly comparison of RSSS collections by fiscal year is displayed in Chart 5. Chart 6 is a retrospective 6-month rolling average of the percent positive, black-faced sheep sampled at RSSS collection sites.

* RSSS positives are reported based on collection date and may have been confirmed after June 30, 2015.

** One RSSS black-faced sheep was an American Black Belly (hair sheep).

*** White, black and mottled face color sheep are weighted based on population. White faced sheep have the highest weight, so when the rare white face positive sheep is found it causes this statistic to markedly increase. Goats and other face colored sheep are not included in this calculation.




WEDNESDAY, DECEMBER 24, 2014

National Scrapie Eradication Program November 2014 Monthly Report Fiscal Year 2015

U.S. Department of Agriculture

Animal and Plant Health Inspection Service

Veterinary Services

Surveillance, Response and Preparedness Services

Sheep and Goat Health Program

December 15, 2014

snip...

INTRODUCTION - Program Summary

At the end of FY 2014, the percent of cull black face sheep found positive at slaughter was 0.02 percent (Chart 1). This measure decreased by 51 percent compared to FY 2013 and 98 percent compared to FY 2003. Eight source flocks (including 2 goat herds) and 3 infected flocks were designated in FY 2013. Three source flocks and 3 infected flocks were designated in FY 2014 (Chart 2), a decrease of 45 percent. One source flock has been designated in FY 2015.

At the end of FY 2014, the percent of cull sheep found positive at slaughter and adjusted for face color* was 0.019 percent (Chart 3). This measure increased by 31 percent compared to FY 2013 and decreased 87 percent compared to FY 2003.

* See slide 4 for an explanation of adjusted weights.

Introduction - Program Summary

INTRODUCTION - Surveillance (Part 1)

Regulatory Scrapie Slaughter Surveillance (RSSS)

RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. 

Samples have been collected from 451,240 animals since April 1, 2003. 

There have been 475 NVSL confirmed positive animals* (467 classical cases and 8 Nor98-like cases) since the beginning of RSSS. 

As of November 30, 2014, 7,502 samples have been collected in FY 2015, 6,010 from sheep and 1,492 from goats.

As of November 30, 2014, 1 goat has tested positive for scrapie; this is the first positive goat case found through RSSS. 

The weighted percentage of samples from sheep that have tested positive for each face color from FY 2003 through FY 2015 is depicted in Chart 3. In November 2013, administrative units within APHIS Veterinary Services reorganized from 2 Regions to 6 Districts (Figure 1). The distribution of sheep and goat populations by District is depicted in Chart 4a. The number of animals collected for FY 2015 by District where collected is shown in Chart 4b. A monthly comparison of RSSS collections by fiscal year is displayed in Chart 5. Chart 6 is a retrospective 6-month rolling average of the percent positive, black-faced sheep sampled at RSSS collection sites.

* RSSS positives are reported based on collection date and may have been confirmed after November 30, 2014.

** White, black and mottled face color sheep are weighted based on population. White faced sheep have the highest weight, so when the uncommon white face positive sheep is found it will cause this statistic to increase. Goats and other face colored sheep are not included in this calculation.

Introduction – Surveillance (Part 1)

Introduction – Surveillance (Part 1)

INTRODUCTION - Surveillance (Part 2) On-Farm Surveillance Testing sheep and goats on-farm is an essential part of scrapie surveillance. It includes both regulatory testing of scrapie exposed and potentially exposed sheep and goats and testing sheep and goats on farm for routine surveillance. As the National Scrapie Eradication Program moves closer towards meeting the goal of identifying the last remaining cases of classical scrapie, finding and testing all sheep and goats meeting targeted sampling criteria is even more important. As of November 30, 2014, 217 sheep and 105 goats have been tested on-farm for FY 2015. One clinical suspect sheep and two other sheep from the same flock have tested positive. The number of animals tested on-farm by month and by species for FY 2015 is shown in Chart 7. Total Animals Sampled for Scrapie Testing As of November 30, 2014, 7,824 animals have been sampled for scrapie testing in FY 2015:

• 7,502 RSSS samples and 322 on-farm samples (Chart 8);

• Of which 6,227 were sheep and 1,597 were goats. Distribution of sampling by type (RSSS or on-farm) and by species is shown in Chart 9.

INTRODUCTION - Positive Cases and Infected/Source Flocks

Positive Scrapie Cases*

Through On-Farm surveillance, one clinical suspect sheep tested positive for scrapie in November. (Table 7 and Figure 2). The flock of origin was designated as a source flock. Since the designation, two other sheep from the flock died and tested positive for scrapie.

The first RSSS positive goat was reported in November 2014. This case increases the number of confirmed positive cases in goats since FY 2002 to 40 (Table 7 and Figure 3). Infected and Source Flocks

As of November 30, 2014, there were 5 flocks with an open infected or source status

(Figure 4). One new source flock has been designated in FY 2015. (Figure 5). New infected and source statuses from FY 1997 to FY 2015 are depicted in Chart 2.

* Samples collected between October 1, 2014 and November 30, 2014 and confirmed by December 15, 2014. Cases and New Infected/Source Flocks

INTRODUCTION - Scrapie Flock Certification Program (SFCP)

As of November 30, 2014, there were 453 flocks participating in the Scrapie Flock Certification Program (SFCP). Statuses of these flocks were 178 export monitored, 18 export certified, and 257 select monitored flocks (Figure 6). SFCP open statuses by fiscal year from FY 2007 to FY 2015 are depicted in Chart 10.

The current status of participating flocks is available to the public on the SFCP Web Page.1

The current version of the SFCP standards was published June 20, 2013. A copy of the standards can be downloaded from APHIS’ SFCP Web Page.

1 Note: Flocks that have “Certified” status on the SFCP Web Page are not listed in this report because it is a transitional status concurrent with their Export Monitored status.

This report is based on information and test results available at the time of report generation. Numbers are subject to change due to later reporting of test results and updates in the database.

snip...see full text ;




THURSDAY, DECEMBER 05, 2013

National Scrapie Eradication Program October 2013 Monthly Report Fiscal Year 2014 TSE PRION REPORT

PROGRAM SUMMARY

At the end of FY 2013, the percent of cull sheep found positive at slaughter and adjusted for face color was 0.015 percent (Chart 1). This measure of prevalence has decreased by 90 percent since slaughter surveillance started in FY 2003.

Eight source flocks (including two goat herds) and three infected flocks were designated in FY 2013. This is compared to eight new infected or source flocks that were designed in FY 2012. (Chart 2).

INTRODUCTION

Surveillance (Part 1)

Regulatory Scrapie Slaughter Surveillance (RSSS)

RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. 

Samples have been collected from 399,940 animals since April 1, 2003. 

There have been 470 NVSL confirmed positive animals (462 classical cases and 8 Nor98-like cases) since the beginning of RSSS. 

As of October 31, 2013, 2,240 samples have been collected in FY 2014, 655 of which were from goats. 

One white-faced sheep has tested positive for scrapie in FY 2014. 

The percentage of samples that have tested positive for each face color from FY 2003 through FY 2014 is depicted in Chart 3. 

Cumulative regional sample collection numbers are shown in Chart 4 and are based upon the State in which the animal was tagged. The number of animals collected for FY 2014 by month and by region where collected is shown in Chart 5. A monthly comparison of RSSS collections by fiscal year is displayed in Chart 6. Chart 7 is a retrospective 6-month rolling average of the percent positive, black-faced sheep sampled at RSSS collection sites.

*RSSS positives are reported based on collection date and may have been confirmed after October 31, 2013.

Surveillance (Part 2) On-Farm Surveillance Testing of animals in the field has always been part of scrapie surveillance (regulatory field cases and live-animal testing). As the National Scrapie Eradication Program moves closer towards meeting the goal of identifying the last remaining cases of classical scrapie by 2017, finding and testing all sheep and goats meeting targeted sampling criteria is even more important. As of October 31, 2013, 315 sheep and 35 goats have been tested on-farm for FY 2014. No animals have tested positive. The number of animals tested on-farm by month and by species for FY 2014 is shown in Chart 8. Total Animals Sampled for Scrapie Testing As of October 31, 2013, 2,590 animals have been sampled for scrapie testing:

•2,240 RSSS samples and 350 on-farm samples [includes regulatory testing (necropsy and live-animal) and on-farm surveillance] (Chart 9);

•Of which 1,900 were sheep and 690 were goats. Distribution of sampling by type (RSSS or on-farm) and by species is shown in Chart 10.

Positive Cases and New Infected/Source Flocks

Positive Scrapie Cases

One positive white-faced sheep tested through RSSS has been reported in FY 2014* (Table 1 and (Figure 1).

The number of confirmed positive cases in goats since FY 2002 is 34; the most recent case was a Nigerian dwarf goat, confirmed positive in July 2013. (Figure 2).

Infected and Source Flocks

As of October 31, 2013, there were ten flocks with an open infected or source status

(Figure 3). Three new infected flocks have been designated in 2014 (Figure 4). The ratio of infected and source flocks released to newly identified infected and source flocks for FY 2014 = 0 : 3. New infected and source statuses from FY 1997 to FY 2014 are depicted in Chart 2.

* Samples collected between October 1, 2013 and October 31, 2013 and confirmed by

November 15, 2013.

snip...see full text ;




Scrapie USA 2012



Scrapie USA 2011

REPORT OF THE COMMITTEE Scrapie

RESOLUTION NUMBER: 29 and 33 Combined -- APPROVED

SOURCE: COMMITTEE ON SCRAPIE

COMMITTEE ON SHEEP AND GOATS

SUBJECT MATTER: SCRAPIE ERADICATION PROGRAM – SURVEILLANCE LEVELS

BACKGROUND INFORMATION:

To continue progress toward scrapie eradication, enhanced surveillance and enforcement of regulations is paramount. The National Scrapie Eradication Program (NSEP) began in 2001 and has made excellent progress as demonstrated by a 96 percent reduction of scrapie in sheep diagnosed positive at slaughter as adjusted for face color. At this time the best available epidemiological analysis suggests that, with adequate funding, eradication is possible by 2017. However, as described in the National Scrapie Surveillance Plan, funding is currently inadequate to meet surveillance goals. Specifically, funding is needed to insure that sampling goals are met for both sheep and goats and that the information system is designed to maximize the value of the data collected. Also, the number of scrapie-positive animals that could be traced from slaughter was only 80 percent in FY 2011. Surveillance, identification compliance, and producer education must be significantly increased in order to find the diminishing number of scrapie-infected flocks/herds.

As the NSEP nears success, maximum surveillance is needed to achieve the final goal of eradication. We are concerned that federal budget constraints may jeopardize the ability to carry out the targeted surveillance needed for final scrapie eradication.

RESOLUTION:

The United States Animal Health Association urges the United States Department of Agriculture, Animal and Plant Health Inspection Services, Veterinary Services to maintain or increase scrapie surveillance levels for sheep, and increase surveillance levels for goats.

snip...

National Scrapie Eradication Program

Diane Sutton, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services (USDA-APHIS-VS) gave the following update of the scrapie eradication program:

Scrapie Eradication Program Results

• There has been a 96% decrease in the percent positive sheep sampled at slaughter adjusted for face color, from 0.16 to 0.0067%, since the start of Regulatory Scrapie Slaughter Surveillance (RSSS) in FY 2003 thru Aug. 31, 2011.

• A decrease of 40% newly infected and source flocks was reported in FY 2011 through August compared to the same date in FY 2010.

• At the current rate of progress, we expect the prevalence to be at or near zero for FY 2017.

Slaughter Surveillance

• The number of animals sampled through slaughter surveillance in FY 2011, through Aug. 31, 2011, was 34,146 a decrease from 42,104 in FY 2010 — a decrease of 19%. The decline was primarily due to strict adherence to targeting criteria to reduce testing costs.

Scrapie Surveillance Plan

• Implementation FY 2011

o States with RSSS collection sites continue to sample all targeted sheep and goats.

o States have state-of-origin sampling minimums for sheep for FY 2011 and FY 2012.

o The annual state-of-origin sampling minimum for sheep is 20% of the number required to detect a scrapie prevalence of 0.1% with 95% confidence or 1% of the breeding flock in the State, whichever is less. The objective is to sample sufficient sheep in a five-year period to detect a scrapie prevalence of 0.1% with 95% confidence or 5% of the breeding flock in the State, whichever is less. 

o If this minimum number was not collected in FY 2010 through RSSS, the State will be expected to find other sampling sources to meet the minimum. Thirty-two States met the FY 2011 sampling minimum in FY 2010.

o Ongoing sampling of nonclinical goats 2, 3, 4 and 5 years old began in FY 2011.

• VS plans to set annual State-of-origin sampling minimum for goats once the proposed rule revising title 9, Code of Federal Regulations (9 CFR) parts 54 and 79 is finalized.

• After States have met their sheep and goat sampling minimums for 5 years, or have accumulated the required number over a longer time period and have not detected a case of classical scrapie, they may be designated as a lower-risk State with lower annual sampling minimums.

Note: These are minimums. Plans are to continue to collect samples from the maximum number of targeted animals given the available budget. 


Scrapie and Nor-98 Scrapie November 2009 Monthly Report Fiscal Year 2010 and FISCAL YEAR 2008

Thursday, January 07, 2010 

Scrapie and Nor-98 Scrapie November 2009 Monthly Report Fiscal Year 2010 and FISCAL YEAR 2008

November 2009 Monthly Report Fiscal Year 2010

Positive Scrapie Cases

As of November 30, 2009, 16 positive cases in sheep or goats were reported by the National Veterinary Services Laboratories (NVSL); 13 were field cases and 3 were Regulatory Scrapie Slaughter Surveillance (RSSS) cases collected between October 1, 2009 and November 30, 2009 and confirmed by December 18, 2009 (Figure 7). 

Field cases are positive animals tested as part of a disease investigation including potentially exposed, exposed, and suspect animals. 

TWENTY ONE cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002 (Figure 8). 

The most recent positive goat case was confirmed rectal biopsy positive in November 2009 and originated in the same herd in Michigan as the positive goat cases that were found in FY 2008. 

The positive goat has been held in quarantine for research by USDA's Agricultural Research Service since 2008.

snip...

Does not include Nor98-like Scrapie cases found through RSSS (2 in FY 2007 and 1 in FY 2008)





SCRAPIE USA 2009

Report of the committee Scrapie USA 2009

Scrapie Flock Certification Program: As of July 31, 2009, there were 1,830 flocks participating in the Scrapie Flock Certification Program (SFCP). Of these flocks 543 were certified flocks, 1,241 were complete monitored flocks, 41 were export monitored, and 5 were selective monitored flocks.

National Scrapie Surveillance Plan Implementation: The National Scrapie Surveillance Plan is posted at 

http://www.aphis.usda.gov/vs/nahss/sheep/national_scrapie_surveillance_plan_08192008.pdf




The plan provides a comprehensive review of scrapie surveillance in the U.S., explains the basis for implementing state-of-origin sampling targets and ultimately flock level surveillance, and establishes minimum targets for FY 2009 and 2010. In FY 2009, Area Action Plans were developed to help meet state-of-origin sampling and ID compliance targets identified by the National Scrapie Surveillance Plan. This activity resulted in increased sampling in states not meeting plan targets.

Infected and Source Flocks: Thirty-three percent fewer newly infected and source flocks were identified in FY 2009 through July compared to the same month in FY 2008 (Figure 1). 

As of July 31, 2009, there were 21 scrapie infected and source flocks with open statuses.

In FY 2009, 21 new source flocks and 8 new infected flocks had been reported; 26 flocks had completed a clean-up plan and been released.

The ratio of infected and source flocks released to newly identified infected and source flocks for FY 2009 = 0.9 : 1.

Positive Scrapie Cases: As of July 31, 2009, 65 positive cases in sheep or goats were reported by the National Veterinary Services Laboratories (NVSL); 34 were field cases and 31 were RSSS cases collected between October 1, 2008 and July 31, 2009 and confirmed by August 20, 2009. 

Field cases are positive animals tested as part of a disease investigation including potentially exposed, exposed and suspect animals. 

Twenty cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002.

The most recent positive goat case was confirmed in July 2009 and is epidemiologically linked to the same herd in Michigan as the positive goat cases that were found in FY 2008. The positive goat was a pet animal quarantined as part of the FY 2008 investigation. No additional animals were exposed.

Regulatory Scrapie Slaughter Surveillance (RSSS): RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks. Samples have been collected from 223,452 animals since April 1, 2003: this total includes 695 rectal biopsies collected in Texas as part of a surveillance pilot project. There have been 415 NVSL confirmed positive animals since the beginning of RSSS. As of July 31, 2009, 34,193 samples, including 513 rectal biopsies, have been collected in FY 2009. Thirty one samples collected in FY 2009 have tested positive for scrapie; 28 of these were from black-faced sheep and 3 from mottle-faced sheep. Two of these RSSS cases originated from a source flock identified at the end of FY 2008. Four other animals originated from flocks containing other RSSS positive sheep. There was an 11% decrease in percent positive black face sheep sampled at slaughter (.18 to .16%) between FY 2008 and FY 2009 as of July 31, 2009 if multiple positives from the same flock are excluded (Figure 2). RSSS was designed based on the findings of the Center for Epidemiology and Animal Health (CEAH), Scrapie: Ovine Slaughter Surveillance (SOSS) study. The results of SOSS can be found at http://www.aphis.usda.gov/vs/ceah/cahm/Sheep/sheep.htm.

Scrapie Testing: As of July 31, 2009, 36,524 animals have been sampled for scrapie testing: 34,193 RSSS samples (number includes 513 rectal biopsies from Texas), 1,663 regulatory field cases, and 668 liveanimal biopsies .

Animal ID: As of September 1, 2009, 160,294 sheep and goat premises had been assigned identification numbers in the Scrapie National Generic Database and 126,123 premises had received official ear tags. 





SCRAPIE USA REPORT FISCAL YEAR 2008

Positive Scrapie Cases

As of September 30, 2008, 176 new scrapie cases were confirmed and reported by the National Veterinary Services Laboratories (NVSL) in FY 2008 (Figure 5). 

Of these, 134 were field cases and 42* were Regulatory Scrapie Slaughter Surveillance (RSSS) cases (collected between October 1, 2007 and September 30, 2008) (Slide 15). 

The field case total includes multiple cases from the same flocks. 

One of the positive field cases was genotyped as AAQR. THIS IS THE FIRST CONFIRMED CASE OF CLASSICAL SCRAPIE IN THE UNITED STATES IN A SHEEP OF THIS GENOTYPE. 

THE ONLY WHITE-FACED RSSS POSITIVE WAS COMPATIBLE WITH NOR98-LIKE SCRAPIE. 

Nineteen cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002 (Figure 6) including five goat cases in FY 2008 that originated from the same herd in Michigan.


April, 30, 2008

SCRAPIE USA

INFECTED AND SOURCE FLOCKS

There were 20 scrapie infected and source flocks with open statuses (Figure 3) as of April, 30, 2008. 

Twenty eight new infected and source flocks have been designated in FY 2008 (Figure 4); three source flocks were reported in April. ...snip

POSITIVE SCRAPIE CASES

As of April 30, 2008, 122 new scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL) in FY 2008 (Figure 6). 

Of these, 103 were field cases and 19* were Regulatory Scrapie Slaughter Surveillance (RSSS) cases (collected in FY 2008 and reported by May 20, 2008). 

Positive cases reported for April 2008 are depicted in Figure 7. Eighteen cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002 (Figure 8). 

The most recent positive goat case was confirmed in February 2008 and originated from the same herd in Michigan as the other FY 2008 goat cases. ...

snip

CAPRINE SCRAPIE PREVALENCE STUDY (CSPS)

snip...

However, four positive goats have been identified this fiscal year through field investigations. One was a clinical suspect submitted for testing and the other three originated from the birth herd of the clinical case.

ANIMALS SAMPLED FOR SCRAPIE TESTING

As of April 30, 2008, 26,703 animals have been sampled for scrapie testing: 23,378 RSSS, 1,517 goats for the CSPS study, 1,466 regulatory field cases, 270 regulatory third eyelid biopsies, and 72 regulatory rectal biopsies (chart 8).

TESTING OF LYMPHOID TISSUE OBTAINED BY RECTAL BIOPSY WAS APPROVED BY USDA AS AN OFFICIAL LIVE-ANIMAL TEST ON JANUARY 11, 2008. ...

PLEASE NOTE, (FIGURE 6), Scrapie Confirmed Cases in FY 2008 MAP, PA 3, 1**, Two cases-state of ID UNKNOWN, 1 case Nor98-like**



Report of the committee National Scrapie Surveillance Plan The National Scrapie Surveillance has been finalized and posted at http://www.aphis.usda.gov/vs/nahss/sheep/national_scrapie_ surveillance_plan_08192008.pdf. The plan provides a comprehensive review of scrapie surveillance in the US, explains the basis for implementing state-of-origin sampling targets and ultimately flock level surveillance, and establishes minimum targets for FY 2009 and 2010.

Infected and Source Flocks

As of September 30, 2008, there were 31 scrapie infected and source flocks, a decrease of 16 percent from September 30, 2007. There were a total of 61 new infected and source flocks reported for FY 2008, a decrease of 15 percent from FY 2008. Chart 1 shows the number of new infected and source flocks by year. The total infected and source flock statuses that were released in FY 2008 was 64. 174 positive scrapie cases were confirmed and reported by the National Veterinary Services Laboratories (NVSL) for FY 2008. Of these, 40 were RSSS cases, (collected in FY 2008), 128 positive field necropsy cases, 4 rectal biopsy and 2 third eyelid tests. Five of the field cases were goats that originated from the same herd. One RSSS case was consistent with Nor98 scrapie. NOTE: Ante-mortem scrapie testing in sheep and goats using rectal biopsy was approved for program use by USDA for in January 2008.

Approximately 2,438 animals were indemnified comprised of 51.4 percent non-registered sheep, 30.5 percent registered sheep, 9.6 percent non-registered goats and 8.5 percent registered goats.

Regulatory Scrapie Slaughter Surveillance (RSSS) RSSS was designed based on the findings of the Center for Epidemiology and Animal Health (CEAH) Scrapie: Ovine Slaughter Surveillance (SOSS) study. The results of SOSS can be found at www. aphis.usda.gov/vs/ceah/cahm/sheep/sheep.htm. RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks for clean-up. During FY 2008, collections increased by 6 percent overall and by 13 percent for black and mottled face sheep compared to FY2007. Improvement in the overall program effectiveness and efficiency is demonstrated by the 30 percent decrease in percent positive black faced sheep compared to FY 2007 (.27 to .19 percent, based on test results posted before October 10, 2008). During FY 2007, 43,887 samples were collected (chart 2). There have been 40 NVSL confirmed positive cases collected in FY2008. Face colors of these positives were 39 black and 1 white. The white face case was consistent with Nor98 scrapie. The percent positive by face color is shown in the chart 3 below. One black face case was in an AA136 QR171 ewe.

Caprine Scrapie Prevalence Study (CSPS)

CSPS was conducted from May 2007 to March 2008, to estimate the national prevalence of scrapie in adult goats at slaughter. 3,032 goats were sampled for scrapie testing. None tested positive for scrapie; from this we are able to conclude that the prevalence is less than 0.1 percent

Scrapie Testing

As of September 30, 2008, 48,269 animals have been sampled for scrapie testing: 43,887 RSSS, 1,517 goats for the CSPS, 2,277 regulatory field cases, 139 necropsy validations, and 282 and 306 regulatory third eyelid and rectal biopsies respectively.

Animal ID

As of September 30, 2008, 145,343 sheep and goat premises had been assigned identification numbers in the Scrapie National Generic Database and 113,656 premises had received official ear tags.

Note: report based on data available as of October 10, 2008 Nor98-like Scrapie in the United States of America was presented by Drs. Christina M. Loiacono, S. Mark Hall, and Bruce V. Thomsen, National Veterinary Services Laboratory, USDA-APHIS-VS.

This paper describes the first six sheep diagnosed with Nor98- like disease in the United States and serves to acknowledge the increased efforts of diagnosticians and the USDA program to control and eradicate scrapie disease. Classical scrapie, a fatal neurodegenerative disease affecting the central nervous system of sheep and goats, is among a number of diseases classified as transmissible spongiform encephalopathies (TSEs). Recently, a distinct strain of scrapie was diagnosed in sheep in Norway1 and has been identified in numerous countries of the European Union (EU). The disease has been identified, among other names, as Nor98 or Nor98-like scrapie. Distinctions between classical scrapie and Nor98-like scrapie are made based on signalment, clinical signs, histopathology and immunodiagnostic results. In the past, the classical scrapie disease was confirmed by examination of the brain tissue for a triad of histopathological signs – vacuolation, loss of neurons and gliosis – and, more recently, by immunohistochemical (IHC) or biochemical detection of abnormal prion protein (PrPSc) in the brain, or lymphoid tissues. In the case of Nor98-like scrapie there is generally little or no vacuolation in the brain and, to date, no lymphoid accumulation of PrPSc has been detected. Classical scrapie typically has the most intense PrPSc immunostaining at the obex (motor nucleus of the vagus), while this area is spared in Nor98-like scrapie. Alternatively, Nor98-like scrapie consistently has PrPSc immunostaining in the spinal nucleus of the trigeminal nerve and variable, but often an intense immunostaining for PrPSc in the cerebellum. Thus the diagnosis of Nor98 and Nor98-like disease can be based on immunohistochemistry identifying abnormal prion protein in regions of the brain not typically associated with classical scrapie. Additionally there is a distinct diagnostic western blot pattern for Nor98 and Nor-98 like disease consisting of three or more protein bands with the unglycosylated band being less than 15 kd, compared to classical scrapie in which the unglycosylated band is greater than 15 kd. Nor98 and Nor-98 like disease is associated with older sheep, usually greater than four years of age, while sheep in the range of three to five years of age are more commonly affected by classical scrapie. Clinical signs are uncommon with Nor98 and Nor98-like disease but when present most often include ataxia without pruritis. Genotypes known to provide sheep with resistance to classical scrapie are not spared from Nor98 and Nor98- like disease.

The six U.S. cases had no clinical signs reported. Three cases were detected during slaughter surveillance, two were detected as a result of classical scrapie being found in the flock, one found during testing associated with diagnostic necropsy. Five of the 6 cases had genotypes that are susceptible to classical scrapie and one was AARR. Only one Nor98-like scrapie case was found per flock.




SCRAPIE PROGRAM FY REPORT 2007

Prepared by National Center for Animal Health Programs Ruminant Health Programs Team November 15, 2007

snip...

Infected and Source Flocks

During FY 2007, there were a total of 76 new infected or source flocks identified. 

Of those new flocks identified, 30 were infected flocks and 46 were source flocks (Figure 2). 

As of September 30, 2007, there were 38 scrapie infected and source flocks with open statuses (Figure 3). ...

snip...

In FY 2007, 331 scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL), including 59* Regulatory Scrapie Slaughter Surveillance (RSSS) cases (Figure 5 and Slide 16). 

In FY 2007, two field cases, one validation case, and two RSSS cases were consistent with Nor-98 scrapie. 

The Nor98-like cases originated from flocks in California, Minnesota, Colorado, Wyoming and Indiana respectively. Nineteen cases of scrapie in goats have been reported since 1990 (Figure 6). 

The last goat case was reported in September 2007.

snip...

see full report here ;

Scrapie Flock Certification Program

As of September 30, 2007, there were 2,042 flocks participating in the Scrapie Flock Certification Program (SFCP). Of these flocks 404 were certified flocks, 1,630 were complete monitored flocks, four were export monitored and four were selective monitored.

Infected and Source Flocks

As of September 30, 2007, there were 37 scrapie infected and source flocks, a decrease of 56 percent from September 30, 2006. 

There were a total of 72 new infected and source flocks reported for fiscal year (FY) 2007, a decrease of 38 percent from FY 2006. 

Chart 1 shows the number of new infected and source flocks by year. 

The total infected and source flock statuses that were released in FY 2007 was 83. 

Three hundred, thirty-one positive scrapie cases were confirmed and reported by the National Veterinary Services Laboratories (NVSL) for FY 2007. 

Of these, 59 were RSSS cases, collected in FY 2007, 253 positive field cases, six test validation necropsies, and 13 third eyelids tests. One of the field cases was a goat. Five cases were consistent with Nor98 scrapie (Figure 1).

Approximately 3,622 animals were indemnified comprised of 61 percent non-registered sheep, 35 percent registered sheep, 2.3 percent non-registered goats and 1.7 percent registered goats. 

Regulatory Scrapie Slaughter Surveillance (RSSS)

RSSS was designed based on the findings of the Center for Epidemiology and Animal Health (CEAH) Scrapie: Ovine Slaughter Surveillance (SOSS) study. The results of SOSS can be found at www.aphis.usda.gov/vs/ceah/cahm/sheep/sheep.htm. RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks for cleanup. During FY 2007, collections increased by 11 percent overall and by 16 percent for black and mottled faced sheep compared to FY2006. Improvement in the overall program effectiveness and efficiency is demonstrated by the 34 percent decrease in percent positive black faced sheep compared to FY 2006 (.44 to .29 percent, based on test results posted before October 12, 2007). During FY 2007, 41,244 samples were collected (Figure 2). There have been 59 NVSL confirmed positive cases collected in FY2007. Face colors of these positives were 46 black, 11 mottled, one white and one unknown. The percent positive by face color is shown in Figure 3 below.

Caprine Scrapie Prevalence Study (CSPS)

CSPS was initiated in May 2007, to estimate the national prevalence of scrapie in adult goats at slaughter. If no scrapie is found we will be able to conclude that the prevalence is less than 0.1 percent. As of September 30, 2007, 1,515 goats were sampled for scrapie testing. None had tested positive for scrapie.

Scrapie Testing

As of September 30, 2007, 47,697 animals have been sampled for scrapie testing: 41,244 RSSS, 1,515 goats for the CSPS, 3,557 regulatory field cases, 139 necropsy validations, and 1,242 regulatory third eyelid biopsies. 

Report of the committee

Animal ID

As of October 10, 134,595 sheep and goat premises had been assigned identification numbers in the Scrapie National Generic Database and 99,903 premises had received official eartags (Figure 4).

Note: report based on data available as of October 12, 2007 




SCRAPIE USA

***UPDATE JANUARY 20, 2007

Subject: REPORT OF THE COMMITTEE ON SCRAPIE ANNUAL REPORT 2006

Date: January 15, 2007 at 7:53 pm PST

REPORT OF THE COMMITTEE ON SCRAPIE

snip...

Infected and Source Flocks

As of September 30, 2006, there were 85 scrapie-infected and source flocks (48 infected and 37 source). 

There were a total of 116 new infected and source flocks reported for FY 2006. 

Figure 1 shows the number of new infected and source flocks by year. 

The total infected and source flock statuses that were released in FY 2006 was 100. 

A total of 343 positive scrapie cases were confirmed and reported by the National Veterinary Services Laboratories (NVSL). 

Of these, 70 were RSSS cases, (collected in FY 2006 and confirmed in FY 2006 or FY 2007), and 222 positive field necropsy cases (most of these cases were found during depopulations of scrapie exposed animals in infected/source flocks), 14 necropsies of field cases retained long term for test evaluation, and 37 third eyelid regulatory tests confirmed in FY 2006. 

Three of the field cases were goats. One goat case, in Colorado, could not be linked to exposure in sheep as a result Colorado goats no longer meet the requirements to be classified as low-risk goats or low-risk commercial goats for interstate movement.

Approximately 3,822 animals were indemnified comprised of 62% non-registered sheep, 30% registered sheep, 5% non-registered goats and 3% registered goats. 

This represents a 26% decrease over FY 2005 with a significant shift from registered to grade animals.

Regulatory Scrapie Slaughter Surveillance (RSSS)

RSSS was designed based on the findings of the Center for Epidemiology and Animal Health (CEAH) Scrapie: Ovine Slaughter Surveillance (SOSS) study. The results of SOSS can be found at

http://www.aphis.usda.gov/vs/ceah/cahm/Sheep/sheep.htm.

RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks for clean-up. 

During FY 2006, collections increased by 9% overall and by 16% for black and mottled faced sheep compared to FY 2005. 

Improvement in the overall program effectiveness and efficiency is demonstrated by the 33% decrease in percent positive black faced sheep compared to FY 2005 (0.67 to 0.45%, based on test results posted before November 6, 2006). 

During FY 2006, 37,167 samples were collected. 

The distribution of these samples is shown in figure 2. 

There have been 70 NVSL confirmed positive cases that were collected in FY 2006. 

Face colors of these positives were 62 black and eight mottled. 

The percent positive by face color is shown in the figure 3 below.

Scrapie Testing

In FY 2006, 42,823 animals were sampled for scrapie testing: 37,167 RSSS; 3,649 regulatory field cases, 1,934 regulatory third eyelid biopsies, and 73 necropsy validations.

Animal ID

As of October 02, 2006, 118,668 sheep and goat premises have been assigned identification numbers in the Scrapie National Generic Database. Official eartags have been issued to 96,755 of these premises.

Note: report based on data available as of November 6, 2006

snip...

Descriptive Analysis and Scrapie Infected/Source Flocks and Investigations in FY 2006.

Dianne Norden and Charles Gaiser

Regional Epidemiologists

Veterinary Services

Infected and Source Flocks

On average, Scrapie Infected/Source flocks identified in FY 2006 had an inventory of 98 animals (1,044), 23 animals indemnified on average (1-279), 3.45 positive animals found per flock upon flock cleanup plans. 

Of all these Infected/Source flocks for which data are available, 4,441 animals were involved in trace forward investigations. 

The primary breed of these flocks was predominantly blackfaced breeds, however there were 12 white-faced flocks identified (one Shetland, four Polypay Cross, four Southdown, three Dorset) and one flock whose primary breed was Dorper. 

Most of these flocks (89.7%) underwent a standard genetics based flock plan (flock genotyped and QQ animals removed).

Other flock plans included variations on the standard genetics based flock plan (e.g. some high risk animals retained separately from the genetically less susceptible or resistant animals after lid testing “negative”, other flocks removed QRAV animals in addition to all QQs, and four flocks underwent a whole flock depopulation. 

These flocks were primarily identified because of a positive found at slaughter (43%). Other detection methods included trace forward of exposed animals (30%), trace back to birth flock of positive animals (19%), investigation of clinical suspects (7%) and voluntary surveillance (1%).

Investigations

Attempts were made to trace 4,889 high risk sheep out of these Infected and Source flocks.

While some of these investigations are still ongoing (9%), 16% were untraceable and 75% were traceable to a flock. 

Almost 30 (27) clinically suspicious sheep were investigated in FY 06. 

Seven of these animals were ultimately diagnosed with scrapie resulting in five newly discovered Infected or Source flocks. 

Nearly 37,000 (36,891) samples were collected at slaughter. 

Of these, 55 positive animals were detected, and 31 were successfully traced back to their flock of origin, resulting in 27 newly discovered Infected or Source Flocks. 

Over 20 (22) traces are still ongoing, and two of these positives were untraceable.

Scrapie positive animals

Of the Scrapie positive animals that were found, 75% (116) were female, and most (90%) had lambed or aborted in their flock of origin. 

Most (65%) were still in their flock of birth at the time of diagnosis. 

Nearly all (99.2%) of all positive animals found were QQ, of those that were QQ, most (89.2% were QQAA). 

One animal has initially tested QRAA; the genotype of this animal is being confirmed. One QRAV positive was detected in FY 2006. 

Most positive animals were found as part of an Infected or Source flock depopulation (45%). 

Other methods of detection included RSSS traceback (28%), traceforward investigations (20%), investigation of clinical suspects (5%), and Voluntary Surveillance (2%). 

The breeds of these positives was predominantly black-faced breeds (99), but there were 63 White-faced breeds identified (40 Southdown, 11 Polypay Cross, two Dorsets, and 10 nonspecified white-faced or white-faced crosses). 

The average age of scrapie-positive animals was 3.9 years, ranging from six months to 12 years of age.

http://www.usaha.org/committees/reports/2006/report-scr-2006.pdf 




STATUS REPORT-FISCAL YEAR 2005: COOPERATIVE STATE-FEDERAL SCRAPIE ERADICATION PROGRAM

Diane Sutton, DVM and Gary Ross, DVM

National Center for Animal Health Programs, VS APHIS, USDA In Fiscal Year 2005 the Scrapie Eradication Program focused on: (1) utilization of a genetic based approach to flock clean-up plans; (2) cleaning up infected and source flocks; (3) tracing and testing exposed animals and flocks; (4) expansion of regulatory slaughter surveillance (RSSS); (5) conducting considtent state reviews, (6) producer education; (7) upgrading of the Scrapie National Generic Database and (8) publishing the updated Scrapie Eradication Uniform Methods and Rules (UM&R). The current Scrapie Eradication UM&R is posted at http:// www.aphis.usda.gov/vs/nahps/scrapie/umr-scrapie-erad.pdf.

Consistent State Reviews

States must meet the requirements in 9 CFR 79.6 in order to move sheep and goats in interstate commerce with minimal restrictions. Twenty seven states have enacted the required identification rules, the remaining states have submitted a work plan that describes the steps that will be taken to comply and provided a timeline for completing significant milestones. USDA is conducting onsite scrapie program consistent state reviews and has completed reviews in 12 states. States must be in full compliance by the end of their current rule making cycle. States not in full compliance at that time will be removed from the consistent state list. Removal from the list would create a significant impact on the interstate movement of sheep and goats from those States.

Scrapie Flock Certification Program

As of September 30, 2005, there were 1,961 flocks participating in the Scrapie Flock Certification Program (SFCP). 

Of these flocks 188 were certified flocks, 1,770 were complete monitored flocks, and 3 were selective monitored flocks (figure 2). 

There were 209 flocks newly enrolled and 53 newly certified (13 with status dates in FY 2005 and 40 with status dates in previous years) in FY 2005 (figure 3).

Infected and Source Flocks

As of September 30, 2005, there were 105 scrapie infected and source flocks. 

There were a total of 165** new infected and source flocks reported for FY 2005. 

The total infected and source flocks that have been released in FY 2005 was 128. 

The ratio of infected and source flocks cleaned up or placed on clean up plans vs. new infected and source flocks discovered in FY 2005 was 1.03 : 1*. 

In addition 622 scrapie cases were confirmed and reported by the National Veterinary Services Laboratories (NVSL) in FY 2005, of which 130 were RSSS cases. 

Fifteen cases of scrapie in goats have been reported since 1990. The last goat case was reported in May 2005. 

Approximately 5,626 animals were indemnified comprised of 49% non-registered sheep, 45% registered sheep, 1.4% non-registered goats and 4.6% registered goats.

Regulatory Scrapie Slaughter Surveillance (RSSS)

RSSS was designed to utilize the findings of the Center for Epidemiology and Animal Health (CEAH) Scrapie: Ovine Slaughter Surveillance (SOSS) study. 

The results of SOSS can be found at http:// www.aphis.usda.gov/vs/ceah/cahm/Sheep/sheep.htm. 

RSSS started April 1, 2003. It is a targeted slaughter surveillance program which is designed to identify infected flocks for clean-up. 

During FY 2005 collections increased by 32% overall and by 90% for black and mottled faced sheep improving overall program effectiveness and efficiency as demonstrated by the 26% decrease in percent positive black faced sheep compared to FY 2004. 

Samples have been collected from 62,864 sheep since April 1, 2003, of which results have been reported for 59,105 of which 209 were confirmed positive. 

During FY 2005, 33,137 samples were collected from 81 plants. 

There have been 130 NVSL confirmed positive cases (30 collected in FY 2004 and confirmed in FY 2005 and 100 collected and confirmed in FY 2005) in FY 2005. 

Face colors of these positives were 114 black, 14 mottled, 1 white and 1 unknown. The percent positive by face color is shown in the chart below.

Scrapie Testing

In FY 2005, 35,845 animals have been tested for scrapie: 30,192 RSSS; 4,742 regulatory field cases; 772 regulatory third eyelid biopsies; 10 third eyelid validations; and 129 necropsy validations (Chart 9).



REPORT OF THE COMMITTEE ON SCRAPIE 2004

Chair: Dr. Jim Logan, Cheyenne, WY Vice Chair: Dr. Joe D. Ross, Sonora, TX Dr. John R. Clifford, DC; Dr. Thomas F. Conner, OH; Dr. Wayne E. Cunningham, CO; Dr. Jerry W. Diemer, CO; Dr. Lisa A. Ferguson, MD; Dr. R. David Glauer, OH; Dr. Allen M. Knowles, TN; Dr. Donald P. Knowles, Jr., WA; Dr. Thomas F. Linfield, MT; Dr. Michael R. Marshall, UT; Ms. Sarah J. Mize, CA; Dr. Charles Palmer, CA; Dr. Kristine R. Petrini, MN; Mr. Stan Potratz, IA; Mr. Paul E. Rodgers, CO; Dr. Joan D. Rowe, CA; Dr. Carsten Schroeder, ME; Dr. Pamela L. Smith, IA; Dr. Diane L. Sutton, MD; Dr. Lynn Anne Tesar, SD; Dr. Delwin D. Wilmot, NE; Dr. Nora E. Wineland, CO; Dr. Cindy B. Wolf, MN.

The Committee met on October 27, 2004, from 8:00 am-12:00 pm.

snip...

Dr. Diane Sutton, United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS), National Scrapie Program Coordinator reported on the National Scrapie Program. The report focused on utilization of a genetic based approach to flock clean up plans, cleaning up infected and source flocks, tracing and testing exposed animals and flocks, analysis and publication of the results of the Scrapie Ovine Slaughter Surveillance study (SOSS), implementation of regulatory slaughter surveillance (RSSS), producer education, and finalizing the Scrapie Eradication UM&R for FY2004. 

As of September 30, 2004, the Scrapie Flock Certification Program (SFCP) had 1868 participating flocks including 135 certified flocks, 1726 complete monitored flocks, and seven selective monitored flocks. 

There were seventy infected and source flocks identified as of September 30, 2004. 

In FY2004 a total of 103 new infected and source flocks reported with seventy-seven of those released in FY2004. 

As of September 30, 2004, 368 scrapie cases had been confirmed and reported by the National Veterinary Services Laboratories (NVSL), of which fifty-four were RSSS cases. One new goat case was reported. 

Approximately 3,058 animals were indemnified. 

Dr. Sutton also reported on the Scrapie ovine slaughter surveillance study and the Regulatory Slaughter Surveillance program. Scrapie testing was done on 25,006 animals in FY2004. 

As of September 30, 2004, 90,322 sheep and goat premises have been assigned identification (ID) numbers in the Scrapie National Generic Database. 

Official eartags have been issued to 64,040 of the premises.

snip...see full text;




PROCEEDINGS OF THE UNITED STATES ANIMAL HEALTH ASSOCIATION 2003

PROCEEDINGS ONE HUNDRED AND SEVENTH ANNUAL MEETING of the UNITED STATES ANIMAL HEALTH ASSOCIATION

RESOLUTION NUMBER: 15 APPROVED SOURCE: COMMITTEE ON SHEEP AND GOATS SUBJECT MATTER: SCRAPIE BACKGROUND INFORMATION:

A significant number of sheep in the United States have been identified as immunohistochemistry (IHC) positive on tonsil and/or lymph nodes and IHC negative on obex. 

This number includes 24% of the sheep that tested positive on one or more tissues as part of Regulatory Slaughter Surveillance. 

This makes it important that IHC testing on tonsil and lymph nodes be approved as an official test. 

The United States Department of Agriculture (USDA), Agricultural Research Service (ARS) and Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS) have compiled data on 2,523 sheep of which 467 were positive on at least one tissue and for which results were available for obex or third eyelid and for tonsil or lymph node. 

The Kappa analysis showed the concordance between the currently approved tests and lymphoid nodes or tonsil to be 0.91 in the test validation data set and 0.93 for the National Veterinary Services Laboratory (NVSL) data set. 

As would be expected based on pathogenesis studies, the discrepant positive lymphoid tests were most often seen in young animals. 

The scientific literature supports the correlation between the detection of PrPsc and the presence of infectivity.

RESOLUTION:

The United States Animal Health Association (USAHA) recommends that the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Veterinary Services (VS) to approve immunohistochemistry on specific lymphoid tissues as an official test for the determination of a scrapie positive animal in live and dead sheep and goats.


 

BSE: Time To Take HB Parry Seriously

SCRAPIE HB Parry Seriously’ (YB88/6.8/4.1)

Saturday, December 08, 2007 SCRAPIE HB Parry Seriously’ (YB88/6.8/4.1)

HB Parry Seriously’ (YB88/6.8/4.1)

IF the scrapie agent is generated from ovine DNA and thence causes disease in other species, then perhaps, bearing in mind the possible role of scrapie in CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the notifiable disease.

http://www.bseinquiry.gov.uk/files/yb/1988/06/08004001.pdf







Greetings USDA/APHIS, et al, 

FIRST OFF, this COVID excuse for everything is getting old, USDA/APHIS et al decided long before covid to reduce the numbers of BSE testing to figures so small (below OIE minimal), that it would take a mad cow stumbling up to the news camera to finally be detected. OH, that's right, that already happened before, during the infamous ENHANCED BSE SURVEILLANCE PROGRAM, what happened was, a nice number of BSE testing was proposed during the ENHANCED BSE SURVEILLANCE PROGRAM, but suddenly, atypical BSE cases started showing up, so that program was shut down quickly...problem solved$$$ we will look at that later, first, what about atypical scrapie?

atypical Scrapie

''Based on the analyses performed, and considering uncertainties and data limitations, it was concluded that there is no new evidence that AS can be transmitted between animals under natural conditions, and it is considered more likely (subjective probability range 50–66%) that AS is a non‐contagious, rather than a contagious disease.''

Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie

Published: 8 July 2021 Approved: 14 June 2021


Metadata EFSA Journal 2021;19(7):6686 Keywords: atypical, goats, intensified monitoring, scrapie, sheep, surveillance

On request from: European Commission

Question Number: EFSA‐Q‐2020‐00662

Contact: biocontam@efsa.europa.eu

Note: The Protocol is available under ‘ Supporting Information’.

Abstract

The European Commission asked EFSA whether the scientific data on the 2‐year intensified monitoring in atypical scrapie (AS) outbreaks (2013–2020) provide any evidence on the contagiousness of AS, and whether they added any new knowledge on the epidemiology of AS. An ad hoc data set from intensified monitoring in 22 countries with index case/s of AS in sheep and/or goats (742 flocks from 20 countries, 76 herds from 11 countries) was analysed. No secondary cases were confirmed in goat herds, while 35 secondary cases were confirmed in 28 sheep flocks from eight countries. The results of the calculated design prevalence and of a model simulation indicated that the intensified monitoring had limited ability to detect AS, with no difference between countries with or without secondary cases. A regression model showed an increased, but not statistically significant, prevalence (adjusted by surveillance stream) of secondary cases in infected flocks compared with that of index cases in the non‐infected flocks (general population). A simulation model of within‐flock transmission, comparing a contagious (i.e. transmissible between animals under natural conditions) with a non‐contagious scenario, produced a better fit of the observed data with the non‐contagious scenario, in which each sheep in a flock had the same probability of developing AS in the first year of life. Based on the analyses performed, and considering uncertainties and data limitations, it was concluded that there is no new evidence that AS can be transmitted between animals under natural conditions, and it is considered more likely (subjective probability range 50–66%) that AS is a non‐contagious, rather than a contagious disease. The analysis of the data of the EU intensified monitoring in atypical scrapie infected flocks/herds confirmed some of the known epidemiological features of AS but identified that major knowledge gaps still remain.

snip...






''Based on the analyses performed, and considering uncertainties and data limitations, it was concluded that there is no new evidence that AS can be transmitted between animals under natural conditions, and it is considered more likely (subjective probability range 50–66%) that AS is a non‐contagious, rather than a contagious disease.''

WOW, Texas Holdem TSE Prion Poker is what we call it, are you all in $$$

Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes

Eric D. Cassmann,Najiba Mammadova,S. Jo Moore,Sylvie Benestad,Justin J. Greenlee 

Published: February 11, 2021https://doi.org/10.1371/journal.pone.0246503

Citation: Cassmann ED, Mammadova N, Moore SJ, Benestad S, Greenlee JJ (2021) Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes. PLoS ONE 16(2): e0246503. https://doi.org/10.1371/journal.pone.0246503

Editor: Gianluigi Zanusso, University of Verona, ITALY

Received: November 24, 2020; Accepted: January 21, 2021; Published: February 11, 2021

Abstract

Scrapie is a transmissible spongiform encephalopathy that occurs in sheep. Atypical/Nor98 scrapie occurs in sheep that tend to be resistant to classical scrapie and it is thought to occur spontaneously. The purpose of this study was to test the transmission of the Atypical/Nor98 scrapie agent in three genotypes of Suffolk sheep and characterize the distribution of misfolded prion protein (PrPSc). Ten sheep were intracranially inoculated with brain homogenate from a sheep with Atypical/Nor98 scrapie. All sheep with the ARQ/ARQ and ARQ/ARR genotypes developed Atypical/Nor98 scrapie confirmed by immunohistochemistry, and one sheep with the VRQ/ARQ genotype had detectable PrPSc consistent with Atypical/Nor98 scrapie at the experimental endpoint of 8 years. Sheep with mild early accumulations of PrPSc in the cerebellum had concomitant retinal PrPSc. Accordingly, large amounts of retinal PrPSc were identified in clinically affected sheep and sheep with dense accumulations of PrPSc in the cerebellum.

Introduction

Atypical/Nor98 scrapie (AS) is a fatal prion disease of sheep caused by a misfolded form of the prion protein. Unlike classical scrapie (CS), AS is thought to be a spontaneously occurring disease [1–3]. This is supported by the presence of AS in countries that are free of classical scrapie [4, 5]. It typically affects a single older sheep within a flock, and cases of AS are sporadic and isolated suggesting that natural transmission is unlikely.

The susceptibility of sheep to CS is closely related to polymorphisms in the prion protein gene (PRNP) [6, 7]. Polymorphisms associated with susceptibility or resistance to CS occur at codons 136, 154, and 171. Sheep with the V136R154Q171 and A136R154Q171 haplotypes are susceptible to CS; however, the amino acid polymorphisms A136, R154, and R171 are associated with relative resistance [8–10]. Conversely, naturally occurring cases of AS arise in sheep with the AHQ, ARQ, and ARR haplotypes, and a polymorphism substituting phenylalanine (F) at codon 141 in the PRNP gene increases the risk of AS [11–13].

Several experiments have demonstrated the ability of the AS agent to transmit within the natural host after intracranial inoculation [14–16]. One study found that the AS agent could transmit after a high oral dose of AS brain homogenate [17]. Nonetheless, AS is still considered unlikely to transmit under field conditions; therefore, eradication and surveillance programs for CS have allowed exceptions for AS. As research into AS unfolds, the biological relevance of this disease is gaining attention. Two studies have demonstrated phenotype changes in AS that imply a possible origin for classical scrapie [18] and classical BSE [19]. The present study was designed to generate AS brain material for subsequent projects to investigate interspecies transmission events. Herein, we report our findings after the experimental transmission of AS in sheep with the VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes. This study validates previous work on these genotypes and documents the early accumulation of PrPSc in the retina of sheep with AS.

Results and discussion

All three genotypes of sheep, VRQ/ARQ, ARQ/ARQ, and ARQ/ARR, were susceptible to the AS agent after intracranial inoculation of donor brain homogenate. The diagnosis of AS was confirmed by enzyme immunoassay (EIA) and immunohistochemistry (IHC) with the latter being confirmative. Previous studies have demonstrated experimental transmission of AS to AHQ/AHQ [14, 15] and ARQ/ARQ [16] genotype sheep after intracerebral transmission. Another study showed a phenotypic shift from AS to CH1641-like classical scrapie in a sheep with the AHQ/AHQ genotype [18]. In this study, sheep with the ARQ/ARR genotype had the shortest incubation period ranging from 4.9 years to the experimental endpoint of 8 years (Table 1), and the attack rate was 100% (5/5). Clinical signs were observed in all ARQ/ARR sheep except for a single wether that was culled early to help establish experimental endpoints. Three ARQ/ARR genotype sheep were euthanized due to clinical neurologic disease 4.9–6.7 years post-inoculation. Out of the three genotypes examined, only the ARQ/ARR genotype sheep developed clinical neurologic disease within the eight-year incubation period. In clinically neurologic sheep, we observed stiff legged and hypermetric ataxia (dysmetria), abnormal rear stance, generalized tremors, tremors of the lips, weight loss, and generalized malaise. The spectrum of clinical signs was comparable to other reports of experimental AS in sheep [14, 15]. Three ARQ/ARR genotype sheep (804, 927 and 948) with the most severe dysmetria also had the greatest amount of cerebellar PrPSc. Since dysmetria is typical of animals with cerebellar disease [20], the tendency to observe this as the most consistent and severe neurologic sign is likely related to the characteristic cerebellar accumulation of PrPSc in sheep with AS. The ARQ/ARQ genotype had a long incubation period and remained clinically asymptomatic, as also reported by Okada et al. [16].

Table 1. Results of atypical scrapie transmission in Suffolk sheep. https://doi.org/10.1371/journal.pone.0246503.t001

Sheep with the ARQ/ARQ genotype were positive for AS PrPSc by IHC (2/2). One positive wether remained asymptomatic and was necropsied at the experimental endpoint; whereas, the other sheep was culled due to intercurrent disease around four years post-inoculation. Out of the three original VRQ/ARQ genotype sheep, a single presymptomatic wether had PrPSc in the cerebellum and retina at the experimental endpoint of 8.1 years. The other two sheep succumbed to intercurrent disease, and they did not have detectable PrPSc by means of IHC or EIA at 1.2- and 2.9-years post-inoculation. The VRQ allele, that is generally associated with susceptibility to classical scrapie, is usually absent from naturally occurring AS cases [5, 12, 21]. However, in a study of AS cases from Great Britain, a single VRQ/ARQ case was reported [22]. The prolonged incubation period after intracranial inoculation of AS in a VRQ/ARQ genotype sheep is compatible with the low prevalence in field cases of AS. In fact, field cases of AS often have a polymorphism substituting phenylalanine (F) at codon 141 in the PRNP gene, and most cases have either the AF141RQ or AHQ alleles [12]. All of the sheep in this study contained the amino acid leucine (L) at codon 141.

In order to confirm that sheep had AS and rule out concomitant infection with classical scrapie, all tissues were examined by IHC for PrPSc. The distribution of PrPSc in the brains of sheep was consistent with AS. Immunolabeling of PrPSc appeared as granular and punctate deposits and was largely restricted to the molecular layer of the cerebellum (Fig 1A). Small amounts of punctate and granular staining were also seen in the cerebral cortex, basal nuclei, thalamus, and midbrain. In classical scrapie, PrPSc is found in the dorsal motor nucleus of the vagus nerve (DMNV), one of the early sites of central nervous system accumulation, and in the lymphoid tissue [3]. In the present experiment, PrPSc was observed in the spinal trigeminal tract (Fig 1B), and there was a lack of staining for PrPSc in the DMNV (Fig 1C). Additionally, no PrPSc was detectable by IHC in the lymphoid or peripheral tissues of any sheep; it remained confined to the CNS. Other studies have demonstrated infectivity in peripheral and lymphoid tissues that were IHC negative [17, 23]. This distribution of PrPSc in the present study was consistent with AS in sheep [1, 14]. Furthermore, all genotypes of sheep had similar PrPSc distributions; however, the density of staining was less severe in asymptomatic ARQ/ARQ and VRQ/ARQ genotype sheep. Given a longer incubation period culminating in clinical disease, it is expected that these genotypes would develop more severe PrPSc deposition similar to ARQ/ARR genotype sheep. PrPSc was also found in the spinal cords of each genotype of sheep. Staining of PrPSc appeared as small particulate or fine granular deposits in the dorsal horn. In sheep with the ARQ/ARR genotype, there was minimal PrPSc and it was usually observed in the cervical cord alone. Sheep 929 that lived to the experimental endpoint had PrPSc in both the cervical and thoracic cord segments. In sheep 958 (ARQ/ARQ) and 943 (VRQ/ARQ), there was a mild amount of PrPSc in the dorsal horn of the cervical, thoracic, and lumbar spinal cord segments. This differs from classical scrapie that involves the entire grey matter of the spinal cord in late stage disease [24].

Fig 1. Immunoreactivity of PrPSc in sheep with atypical scrapie.

(A) There is a large amount of PrPSc (red color) within the molecular layer of cerebellum in sheep 958 (ARQ/ARQ). (B) PrPSc (red color) is confined to the spinal trigeminal tract in the medulla oblongata in sheep 948 (ARQ/ARR). (C) The dorsal motor nucleus of the vagus nerve (circle) is devoid of PrPSc in sheep 948. (D) There are multifocal patchy aggregates of PrPSc (red color) in the molecular layer of the cerebellum in sheep 943 (VRQ/ARQ). (E) A small amount of PrPSc (red color) is present in the retina of sheep 943. (F) In sheep 958 there are large amounts of PrPSc (red color) in the plexiform layers of the retina.


We performed both IHC and EIA on cerebellum, cerebrum (parietal cortex), and medulla oblongata at the level of the obex. For the ARQ/ARR and ARQ/ARQ genotype sheep, there was 100% (7/7) agreement between IHC and EIA at detecting PrPSc in the cerebellum. In contrast, the single positive VRQ/ARQ sheep was IHC positive and EIA negative in the cerebellum. This discrepancy was presumably due to the patchy and sparse distribution of PrPSc in the cerebellum (Fig 1D). PrPSc was rarely observed in other brain regions of this animal; however, PrPSc was detected in the retina with IHC (Fig 1E). Moreover, retinal PrPSc was present in each genotype of sheep with atypical scrapie PrPSc in the cerebellum. In clinical sheep with abundant cerebellar PrPSc, there were large amounts of PrPSc in the retina (Fig 1F). PrPSc occurred mostly in the inner and outer plexiform layers, but some minimal labeling was seen in the ganglion and nuclear cell layers. Other reports that describe atypical scrapie do not report retinal PrPSc [1–5, 14–16, 25, 26]. In this study, sheep intracranially inoculated with the atypical scrapie agent accumulated retinal PrPSc in the early stages of disease concomitant with cerebellar PrPSc. This is significant because, sequentially, retinal PrPSc accumulates early in disease; therefore, IHC of retinal tissue may be more sensitive compared to non-cerebellar brain regions.

This experiment demonstrated the transmission of atypical scrapie to three genotypes of sheep after intracranially inoculation, and it is the first study demonstrating experimental transmission to sheep with a VRQ/ARQ PRNP genotype. Additionally, atypical scrapie is further characterized by demonstrating early accumulation of PrPSc in the retina of experimentally inoculated sheep.

Materials and methods Animals for this experiment were derived from a known scrapie-free flock at the United States Department of Agriculture National Animal Disease Center in Ames, IA. This study used ten Suffolk sheep, nine wethers and one ewe. Nine sheep were 1 year old at the time of inoculation. A single sheep, #958, was 2 years old. Sheep in this study had three distinct PRNP genotypes: ARQ/ARQ, ARQ/ARR, and VRQ/ARQ. The genotypes were determined using polymerase chain reaction and Sanger sequencing as previously described [27]. Sheep were homozygous at other known polymorphic sites M112, G127, M137, S138, L141, R151, M157, N176, H180, Q189, T195, T196, R211, Q220, and R223.

The inoculum for this experiment was cerebral homogenate from an AHQ/ARH genotype sheep with atypical scrapie from Norway (Hedalen). The inoculum was obtained through a collaboration with Sylvie Benestad at the Norwegian Veterinary Institute. The brain homogenate was prepared as a 10% w/v homogenate. Sheep were intracranially inoculated with 1 ml (0.1 grams) of brain homogenate. The procedure has been described previously [28]. Briefly, the sheep were anesthetized with xylazine and a surgical field was prepped over the junction of parietal and frontal bones. A 1-cm skin incision was made, and then a 1-mm hole was drilled along the midline of the calvaria. A 9-cm spinal needle was inserted through the hole, and the inoculum was injected into the cranium. Sheep were kept in a biosecurity level 2 indoor pen for two weeks following inoculation and then moved to an outdoor area. They were fed a daily ration of pelleted and loose alfalfa hay. Sheep were monitored daily for any maladies or other clinical signs consistent with scrapie. The experimental endpoint for this experiment included the earliest of either unequivocal neurologic disease or 8 years post-inoculation. The final 8-year endpoint was established by performing a preliminarily cull of sheep 933 to help determine an appropriate endpoint. Sheep were euthanized at the onset of clinical disease or untreatable intercurrent disease. The method of euthanasia was intravenous administration of sodium pentobarbital as per label directions or as directed by an animal resources attending veterinarian. Clinical signs of disease included abnormalities in gate and/or stance, and ataxia.

A full post-mortem examination was performed on each sheep, and a routine set of tissues were collected consistent with previous experiments [29, 30]. A duplicate set of the following tissues were frozen or saved to 10% buffered neutral formalin: brain, spinal cord, pituitary, trigeminal ganglia, eyes, sciatic nerve, third eyelid, palatine tonsil, pharyngeal tonsil, lymph nodes (mesenteric, retropharyngeal, prescapular, and popliteal), spleen, esophagus, forestomaches, intestines, rectal mucosa, thymus, liver, kidney, urinary bladder, pancreas, salivary gland, thyroid gland, adrenal gland, trachea, lung, turbinate, nasal planum, heart, tongue, masseter, diaphragm, triceps brachii, biceps femoris, and psoas major. Formalin fixed tissues were processed, paraffin embedded, and sectioned at optimal thickness (brain, 4 μm; lymphoid, 3 μm; and other, 5 μm) for hematoxylin and eosin staining and IHC. For IHC, a cocktail of the monoclonal anti-PrPSc antibodies F89/160.1.5 [31] and F99/97.6.1 [32] was applied at a concentration of 5 μg/mL using an automated stainer. Frozen portions of cerebellum, parietal cerebral cortex, and brainstem at the level of the obex were homogenized and tested for the presence of PrPSc using a commercially available EIA (HerdChek; IDEXX Laboratories, Westbrook, ME) according to kit instructions.

Ethics statement

snip...


***> Atypical/Nor98 scrapie occurs in sheep that tend to be resistant to classical scrapie and it is thought to occur spontaneously.

 ***> Unlike classical scrapie (CS), AS is thought to be a spontaneously occurring disease [1–3].

***> It typically affects a single older sheep within a flock, and cases of AS are sporadic and isolated suggesting that natural transmission is unlikely.

***> Several experiments have demonstrated the ability of the AS agent to transmit within the natural host after intracranial inoculation [14–16]. 

***> One study found that the AS agent could transmit after a high oral dose of AS brain homogenate [17]. 

***> Nonetheless, AS is still considered unlikely to transmit under field conditions; therefore, eradication and surveillance programs for CS have allowed exceptions for AS. 

I once again, with great urgency, strenuously urge the USDA and the OIE et al to revoke the exemption of the legal global trading of atypical Nor-98 scrapie TSE Prion, and make any and all, atypical scrapie a mandatory reportable disease ASAP!...terry

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Transmission of the atypical/nor98 scrapie agent to suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes

Author item Cassmann, Eric item MAMMADOVA, JAJIBA - Orise Fellow item BENESTAD, SYLVIE - Norwegian Veterinary Institute item MOORE, SARA JO - Orise Fellow item Greenlee, Justin Submitted to: PLoS ONE Publication Type: Peer Reviewed Journal Publication Acceptance Date: 1/29/2021 Publication Date: N/A Citation: N/A

Interpretive Summary: Atypical scrapie is a prion disease that affects sheep. Unlike classical scrapie, atypical scrapie is thought to occur spontaneously, and it is unlikely to transmit between sheep under natural conditions. Another notable distinction between classical and atypical scrapie is the prion protein genotype of afflicted sheep and the locations in the brain where misfolded prions accumulate. Atypical scrapie generally occurs in sheep that are resistant to classical scrapie. Misfolded prions are predominantly found in the cerebellum for atypical scrapie and not in the brainstem as seen with classical scrapie. Atypical scrapie is a relevant disease because of its potential association with other prion diseases. Some research has shown that the atypical scrapie agent can undergo a transformation of disease forms that makes it appear like classical scrapie or classical bovine spongiform encephalopathy (mad cow disease). Therefore, atypical scrapie is thought to be a possible source for these prion diseases. We investigated the transmission of the atypical scrapie agent to sheep with three different prion protein genotypes. A diagnosis of atypical scrapie was made in all three genotypes of sheep. Misfolded prion protein was detected earliest in the cerebellum and the retina. This is the first report describing the early accumulation of misfolded prions in the retina of sheep with atypical scrapie. Understanding where misfolded prions accumulate in cases of atypical scrapie can lead to better detection earlier in the disease. Furthermore, the materials derived from this experiment will aid in investigating origins of other prion diseases.

Technical Abstract: Scrapie is a transmissible spongiform encephalopathy that occurs in sheep. Atypical/Nor98 scrapie occurs in sheep with that tend to be resistant to classical scrapie and it is thought to occur spontaneously. The purpose of this study was to test the transmission of the Atypical/Nor98 scrapie agent in three genotypes of Suffolk sheep and characterize the distribution of misfolded prion protein (PrPSc). Ten sheep were intracranially inoculated with brain homogenate from a sheep with Atypical/Nor98 scrapie. All sheep with the ARQ/ARQ and ARQ/ARR genotypes developed Atypical/Nor98 scrapie confirmed by immunohistochemistry, and one (1/3) sheep with the VRQ/ARQ genotype had detectable PrPSc consistent with Atypical/Nor98 scrapie at the experimental endpoint of 8 years. Sheep with mild early accumulations of PrPSc in the cerebellum had concomitant retinal PrPSc. Accordingly, large amounts of retinal PrPSc were identified in clinically affected sheep and sheep with dense accumulations of PrPSc in the cerebellum.


***> Atypical/Nor98 scrapie occurs in sheep that tend to be resistant to classical scrapie and it is thought to occur spontaneously.

 ***> Unlike classical scrapie (CS), AS is thought to be a spontaneously occurring disease [1–3].

***> It typically affects a single older sheep within a flock, and cases of AS are sporadic and isolated suggesting that natural transmission is unlikely.

***> Several experiments have demonstrated the ability of the AS agent to transmit within the natural host after intracranial inoculation [14–16]. 

***> One study found that the AS agent could transmit after a high oral dose of AS brain homogenate [17]. 

***> Nonetheless, AS is still considered unlikely to transmit under field conditions; therefore, eradication and surveillance programs for CS have allowed exceptions for AS. 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021

Nor98 cases Diagnosed in the US. To Date

Nor98 cases Diagnosed in the US.

Flock of Origin State FY

Wyoming 2007

Indiana 2007

Pennsylvania 2008

Oregon 2010

Ohio 2010

Pennsylvania 2010

Untraceable 2010

California 2011

Montana 2016

Utah 2017

Montana 2017

Virginia 2018

Colorado 2019

Colorado 2019

Wyoming 2020

Montana 2020

Pennsylvania 2021

Personal Communication from USDA et al Mon, Jan 4, 2021 11:37 am...terry

TUESDAY, SEPTEMBER 22, 2020 

APHIS USDA MORE SCRAPIE ATYPICAL Nor-98 Confirmed USA September 15 2020

17 cases of the Nor98 in the USA to date, location, unknown...tss

17 Nor98-like cases since the beginning of RSSS.


17 Nor98-like cases since the beginning of RSSS. No animals have tested positive for classical scrapie in FY 2021.


WEDNESDAY, FEBRUARY 03, 2021 

Scrapie TSE Prion United States of America a Review February 2021 Singeltary et al


THURSDAY, JANUARY 7, 2021 

Atypical Nor-98 Scrapie TSE Prion USA State by State Update January 2021


TUESDAY, SEPTEMBER 22, 2020 

APHIS USDA MORE SCRAPIE ATYPICAL Nor-98 Confirmed USA September 15 2020


MONDAY, JULY 27, 2020 

APHIS USDA Nor98-like scrapie was confirmed in a sheep sampled at slaughter in May 2020


TUESDAY, JANUARY 26, 2021 

Pennsylvania Scrapie Update Outbreak August 2018 and 3 Nor-98 atypical Cases Detected


MONDAY, JULY 13, 2020 

Efficient transmission of classical scrapie agent x124 by intralingual route to genetically susceptible sheep with a low dose inoculum


WEDNESDAY, MAY 29, 2019 

***> Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures 


THURSDAY, DECEMBER 31, 2020 

Autoclave treatment of the classical scrapie agent US No. 13-7 and experimental inoculation to susceptible VRQ/ARQ sheep via the oral route results in decreased transmission efficiency


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.




Let's review Scrapie Testing, Surveillance, attempted eradication in the USA Precovid, by the year, and compare the number of tested given, and number of scrapie reported, by year, and compare, from a few records of mine, shall we. it just looks to me, the more you test, the more you find, the more you don't test, the less you find. seems this is the way the testing is set up, not to find too many cases. i am reminded of the BSE ENHANCED SURVEILLANCE. a review of that debacle first, and then below that will be PRE-COVID USDA SCRAPIE TESTING 2018 to 2003 figures, surveillance, and attempted eradication...terry

We conducted this enhanced surveillance effort from June 2004 - August 2006. In that time, we collected a total of 787,711 samples and estimated the prevalence of BSE in the United States to be between 4-7 infected animals in a population of 42 million adult cattle. We consequently modified our surveillance efforts based on this prevalence estimate to a level we can monitor for any potential changes, should they occur. Our statistical analysis indicated that collecting approximately 40,000 samples per year from the targeted cattle population would enable us to conduct this monitoring...end 

the rest is total BS imo, bottom line, you don't test you don't find, problems solved $$$




USDA announces expanded BSE surveillance program Filed Under: BSE 

By: Marty Heiberg | Mar 15, 2004 Editor's note: Some material was added to this story Mar 16.

Mar 15, 2004 (CIDRAP News) – Secretary of the US Department of Agriculture (USDA) Ann Veneman this afternoon announced an expanded program of surveillance for bovine spongiform encephalopathy (BSE) in the United States. Preparations for the increased testing will begin immediately and the program is expected to be fully operational by June 1. The new testing procedures will be in place for 12 to 18 months, after which an assessment will determine future plans.

"The intensive one-time surveillance effort will allow us to determine more accurately whether BSE is present in the US cattle population, and if so, estimate the level of disease. By expanding our surveillance, we will be able to provide consumers, trading partners, and industry increased assurances about the BSE status of the U.S. cattle population," states the new plan, which was published on the USDA Web site today.

The new plan incorporates last month's recommendations from the international scientific review panel and it is supported by the Harvard Center for Risk Analysis, Veneman said at a press briefing. It calls for testing a much larger number of specimens from the high-risk BSE cattle population than the current 40,000 per year as well as about 20,000 random samples from normal-appearing adult cows.

Cattle at high risk for BSE are estimated to number approximately 446,000 currently in the United States. The definition of high risk, based on experience in the United Kingdom and Europe, includes adult cattle that are nonambulatory ("downers"), dead on the farm, or showing clinical signs consistent with BSE.

Ron DeHaven, the USDA's chief veterinary officer, said at the briefing that the expanded program would mean testing "as many as we possibly can" of the target population of cattle. He explained that the new testing would allow for identification of BSE at a rate of 1 in 10 million cattle with a confidence level of 95% if 201,000 samples were tested and a confidence level of 99% if 268,000 samples were tested.

Testing will be done at 17 state and university laboratories, with confirmation of any positive results at the National Veterinary Services Laboratory in Ames, Iowa. Funding for the new program totals $70 million.

When questioned about proposals to test 100% of cattle, DeHaven said that science does not justify this level of testing and that, while the USDA is still evaluating the proposals, testing at this level would be solely for marketability and export purposes. The USDA's newly enhanced program, he said, is strictly for surveillance purposes and will determine whether and at what level BSE exists in the target cattle population.

DeHaven said the expanded testing program will rely on rapid screening tests, several of which the USDA is currently evaluating. "We would anticipate in two or three months' time being able to license perhaps a couple or more of those tests," he said.

Because the screening tests are designed to be very sensitive, some false-positive results are expected, DeHaven said, adding, "That's just the nature of the beast." The national laboratory in Ames will use immunohistochemical staining, considered the "gold standard" in BSE testing, to confirm any positives.

DeHaven said the USDA has made no decision yet on the proposal by Creekstone Farms of Arkansas City, Kan., to test all its cattle so the beef can be exported to Japan and other Asian markets.

The USDA will collect samples from high-risk cattle at a variety of places, including federally inspected slaughter plants, farms, rendering plants, veterinary diagnostic laboratories, pet food plants, and livestock sale barns, DeHaven said.

To test a random sample of healthy older cattle, the USDA will focus its main efforts on 40 slaughter plants in 17 states, according to DeHaven. Those plants slaughter more than 86% of all cattle in the nation, he said.

Under questioning, DeHaven refused to give a specific target for the number of high-risk cattle to be tested. "To estimate how many we will be able to collect is simply premature," he said. "It's possible that we would collect somewhere less than 200,000 and still have a very statistically valid sampling."

DeHaven said USDA veterinarians will work with state veterinarians and other state officials to develop plans for collecting cattle samples for testing in each state.

See also:

Transcript of USDA's Mar 15 news briefing http://www.usda.gov/Newsroom/0106.04.html

Robert Roos, CIDRAP News Editor, contributed to this story.



BBBUT, THE REST IS HISTORY, more atypical bse mad cow cases were showing up, testing questionable to say the least, i remind you of the infamous BSE ENHANCED and SUPRESSED BSE SURVEILLANCE AND THE HARVARD BSE BS that followed, and why the infamous ENHANCED BSE SURVEILLANCE AND TESTING WAS SHUT DOWN...terry

Suppressed peer review of Harvard study October 31, 2002
October 31, 2002

Review of the Evaluation of the Potential for Bovine Spongiform Encephalopathy in the United States Conducted by the Harvard Center for Risk Analysis, Harvard School of Public Health and Center for Computational Epidemiology, College of Veterinary Medicine, Tuskegee University

Final Report 


Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE) Update; Notice of Availability and Technical Meeting 

Owens, Julie

From: Terry S. Singeltary Sr. [flounder9@verizon.net]

Sent: Monday, July 24, 2006 1:09 PM

To: FSIS RegulationsComments

Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)


Response to Public Comments on the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update,

October 31, 2005

INTRODUCTION

The United States Department of Agriculture’s Food Safety and Inspection Service (FSIS) held a public meeting on July 25, 2006 in Washington, D.C. to present findings from the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005 (report and model located on the FSIS website: http://www.fsis.usda.gov/Science/Risk_Assessments/index.asp). Comments on technical aspects of the risk assessment were then submitted to FSIS. Comments were received from Food and Water Watch, Food Animal Concerns Trust (FACT), Farm Sanctuary, RCALF USA, Linda A Detwiler, and Terry S. Singeltary. This document provides itemized replies to the public comments received on the 2005 updated Harvard BSE risk assessment. Please bear the following points in mind: 




03-025IFA

03-025IFA-2

Terry S. Singeltary

From: Terry S. Singeltary Sr. [flounder9@verizon.net]

Sent: Thursday, September 08, 2005 6:17 PM

To: fsis.regulationscomments@fsis.usda.gov

Subject: [Docket No. 03-025IFA] FSIS Prohibition of the Use of Specified Risk Materials for Human Food and Requirements for the Disposition of Non-Ambulatory Disabled Cattle


Audit Report

Animal and Plant Health Inspection Service

Bovine Spongiform Encephalopathy (BSE) Surveillance Program – Phase II

and

Food Safety and Inspection Service

Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III

Report No. 50601-10-KC January 2006

Finding 2 Inherent Challenges in Identifying and Testing High-Risk Cattle
Still Remain Our prior report identified a number of inherent problems in
identifying and testing high-risk cattle. 

snip...

BIO-RAD

> > -------- Original Message --------
> > Subject: USA BIO-RADs INCONCLUSIVEs
> > Date: Fri, 17 Dec 2004 15:37:28 -0600
> > From: "Terry S. Singeltary Sr."
> > To:
> >
> >
> >
> > Hello xxxx and Bio-Rad,
> >
> > Happy Holidays!
> >
> > I wish to ask a question about Bio-Rad and USDA BSE/TSE testing
> > and there inconclusive. IS the Bio-Rad test for BSE/TSE that
complicated,
> > or is there most likely some human error we are seeing here?
> >
> > HOW can Japan have 2 positive cows with
> > No clinical signs WB+, IHC-, HP- ,
> > BUT in the USA, these cows are considered 'negative'?
> >
> > IS there more politics working here than science in the USA?
> >
> > What am I missing?
> >
> >
> >
> > -------- Original Message --------
> > Subject: Re: USDA: More mad cow testing will demonstrate beef's safety
> > Date: Fri, 17 Dec 2004 09:26:19 -0600
> > From: "Terry S. Singeltary Sr."
> > snip...end
> >
> >
> > Experts doubt USDA's mad cow results
>
>
>
> snip...END
>
> WELL, someone did call me from Bio-Rad about this,
> however it was not xxxxxx xxxxx.
> but i had to just about take a blood oath not to reveal
> there name. IN fact they did not want me to even mention
> this, but i feel it is much much to important. I have omitted
> any I.D. of this person, but thought I must document this ;
>
> Bio-Rad, TSS phone conversation 12/28/04
>
> Finally spoke with ;
>
>
> Bio-Rad Laboratories
> 2000 Alfred Nobel Drive
> Hercules, CA 94547
> Ph: 510-741-6720
> Fax: 510-741-5630
> Email: XXXXXXXXXXXXXXXXXX
>
> at approx. 14:00 hours 12/28/04, I had a very pleasant
> phone conversation with XXXX XXXXX about the USDA
> and the inconclusive BSE testing problems they seem
> to keep having. X was very very cautious as to speak
> directly about USDA and it's policy of not using WB.
> X was very concerned as a Bio-Rad official of retaliation
> of some sort. X would only speak of what other countries
> do, and that i should take that as an answer. I told X
> I understood that it was a very loaded question and X
> agreed several times over and even said a political one.
>
> my question;
>
> Does Bio-Rad believe USDA's final determination of False positive,
> without WB, and considering the new
> atypical TSEs not showing positive with -IHC and -HP ???
>
> ask if i was a reporter. i said no, i was with CJD Watch
> and that i had lost my mother to hvCJD. X did not
> want any of this recorded or repeated.
>
> again, very nervous, will not answer directly about USDA for fear of
> retaliation, but again said X tell
> me what other countries are doing and finding, and that
> i should take it from there.
> "very difficult to answer"
>
> "very political"
>
> "very loaded question"
>
> outside USA and Canada, they use many different confirmatory tech. in
> house WB, SAF, along with
> IHC, HP, several times etc. you should see at several
> talks meetings (TSE) of late Paris Dec 2, that IHC- DOES NOT MEAN IT IS
> NEGATIVE. again, look what
> the rest of the world is doing.
> said something about Dr. Houston stating;
> any screening assay, always a chance for human
> error. but with so many errors (i am assuming
> X meant inconclusive), why are there no investigations, just false
> positives?
> said something about ''just look at the sheep that tested IHC- but were
> positive''. ...
>
>
> TSS
>
> -------- Original Message --------
> Subject: Your questions
> Date: Mon, 27 Dec 2004 15:58:11 -0800
> From: To: flounder@wt.net
>
>
>
> Hi Terry:
>
> ............................................snip Let me know your phone
> number so I can talk to you about the Bio-Rad BSE test.
> Thank you
>
> Regards
>
>
>
> Bio-Rad Laboratories
> 2000 Alfred Nobel Drive
> Hercules, CA 94547
> Ph: 510-741-6720
> Fax: 510-741-5630
> Email: =================================
>
>
> END...TSS
>
>

ONE final comment tonight, i just cannot take anymore. well, ill just let the facts speak for themselves, no need to even comment ;

Section 2. Testing Protocols and Quality Assurance Controls

In November 2004, USDA announced that its rapid screening test, Bio-Rad Enzyme Linked Immunosorbent Assay (ELISA), produced an inconclusive BSE test result as part of its enhanced BSE surveillance program. The ELISA rapid screening test performed at a BSE contract laboratory produced three high positive reactive results.40 As required,41 the contract laboratory forwarded the inconclusive sample to the APHIS National Veterinary Services Laboratories (NVSL) for confirmatory testing. NVSL repeated the ELISA testing and again produced three high positive reactive results.42 In accordance with its established protocol, NVSL ran its confirmatory test, an immunohistochemistry (IHC) test, which was interpreted as negative for BSE. In addition, NVSL performed a histological43 examination of the tissue and did not detect lesions44 consistent with BSE.

Faced with conflicting results, NVSL scientists recommended additional testing to resolve the discrepancy but APHIS headquarters officials concluded no further testing was necessary because testing protocols were followed. In our discussions with APHIS officials, they justified their decision not to do additional testing because the IHC is internationally recognized as the "gold standard." Also, they believed that conducting additional tests would undermine confidence in USDA’s established testing protocols.

http://www.usda.gov/oig/webdocs/50601-10-KC.pdf

full text 130 pages ;



PDF]Freas, William TSS SUBMISSION
File Format: PDF/Adobe Acrobat -

Page 1. J Freas, William From: Sent: To: Subject: Terry S. Singeltary

Sr. [flounder@wt.net] Monday, January 08,200l 3:03 PM freas ...

http://web.archive.org/web/20170301223601/https://www.fda.gov/OHRMS/DOCKETS/AC/01/slides/3681s2_09.pdf

Sunday, January 10, 2021 
APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...


APHIS Indemnity Regulations [Docket No. APHIS-2021-0010] RIN 0579-AE65 Singeltary Comment Submission

Comment from Singeltary Sr., Terry

Posted by the Animal and Plant Health Inspection Service on Sep 8, 2022





THURSDAY, SEPTEMBER 24, 2020 

The emergence of classical BSE from atypical/ Nor98 scrapie


FRIDAY, OCTOBER 30, 2020 

Efficient transmission of US scrapie agent by intralingual route to genetically susceptible sheep with a low dose inoculum


SUNDAY, OCTOBER 11, 2020 

Bovine adapted transmissible mink encephalopathy is similar to L-BSE after passage through sheep with the VRQ/VRQ genotype but not VRQ/ARQ 


WEDNESDAY, JULY 31, 2019 

The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L


MONDAY, JULY 27, 2020 

APHIS USDA Nor98-like scrapie was confirmed in a sheep sampled at slaughter in May 2020


A REVIEW of facts and science on scrapie zoonosis potential/likelihood and the USA incredible failure of the BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

***> 1st up BSE 589.2001 FEED REGULATIONS 


***> CWD AND SCRAPIE TRANSMITS BY ORAL ROUTES TO PIGS, PRICE OF TSE PRION POKER GOES UP!

2021 Transmissible Spongiform Encephalopathy TSE Prion End of Year Report 2020

CJD FOUNDATION VIRTUAL CONFERENCE CJD Foundation Research Grant Recipient Reports Panel 2 Nov 3, 2020

zoonotic potential of PMCA-adapted CWD PrP 96SS inoculum


4 different CWD strains, and these 4 strains have different potential to induce any folding of the human prion protein. 


***> PIGS, WILD BOAR, CWD <***

***> POPULATIONS OF WILD BOARS IN THE UNITED STATES INCREASING SUPSTANTUALLY AND IN MANY AREAS WE CAN SEE  A HIGH DENSITY OF WILD BOARS AND HIGH INCIDENT OF CHRONIC WASTING DISEASE

HYPOTHOSIS AND SPECIFIC AIMS

HYPOTHOSIS 

BSE, SCRAPIE, AND CWD, EXPOSED DOMESTIC PIGS ACCUMULATE DIFFERENT QUANTITIES AND STRAINS OF PRIONS IN PERIPHERAL TISSUES, EACH ONE OF THEM WITH PARTICULAR ZOONOTIC POTENTIALS


Final Report – CJD Foundation Grant Program A. 

Project Title: Systematic evaluation of the zoonotic potential of different CWD isolates. Principal Investigator: Rodrigo Morales, PhD.


Systematic evaluation of the zoonotic potential of different CWD isolates. Rodrigo Morales, PhD Assistant Professor Protein Misfolding Disorders lab Mitchell Center for Alzheimer’s disease and Related Brain Disorders Department of Neurology University of Texas Health Science Center at Houston Washington DC. July 14th, 2018

Conclusions and Future Directions • We have developed a highly sensitive and specific CWD-PMCA platform to be used as a diagnostic tool. • Current PMCA set up allow us to mimic relevant prion inter-species transmission events. • Polymorphic changes at position 96 of the prion protein apparently alter strain properties and, consequently, the zoonotic potential of CWD isolates. • Inter-species and inter-polymorphic PrPC → PrPSc conversions further increase the spectrum of CWD isolates possibly present in nature. • CWD prions generated in 96SS PrPC substrate apparently have greater inter-species transmission potentials. • Future experiments will explore the zoonotic potential of CWD prions along different adaptation scenarios, including inter-species and inter-polymorphic.



Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease 

Author item MOORE, SARAH - Orise Fellow item Kunkle, Robert item KONDRU, NAVEEN - Iowa State University item MANNE, SIREESHA - Iowa State University item SMITH, JODI - Iowa State University item KANTHASAMY, ANUMANTHA - Iowa State University item WEST GREENLEE, M - Iowa State University item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent. 

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 month challenge groups). The remaining pigs (>6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC. 

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP 

Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.

Interpretive Summary:

Technical Abstract: We have previously shown that the chronic wasting disease (CWD) agent from white-tailed deer can be transmitted to domestic pigs via intracranial or oral inoculation although with low attack rates and restricted PrPSc accumulation. The objective of this study was to assess the potential for cross-species transmission of pig-passaged CWD using bioassay in transgenic mice. Transgenic mice expressing human (Tg40), bovine (TgBovXV) or porcine (Tg002) PRNP were inoculated intracranially with 1% brain homogenate from a pig that had been intracranially inoculated with a pool of CWD from white-tailed deer. This pig developed neurological clinical signs, was euthanized at 64 months post-inoculation, and PrPSc was detected in the brain. Mice were monitored daily for clinical signs of disease until the end of the study. Mice were considered positive if PrPSc was detected in the brain using an enzyme immunoassay (EIA). In transgenic mice expressing porcine prion protein the average incubation period was 167 days post-inoculation (dpi) and 3/27 mice were EIA positive (attack rate = 11%). All 3 mice were found dead and clinical signs were not noted prior to death. One transgenic mouse expressing bovine prion protein was euthanized due to excessive scratching at 617 dpi and 2 mice culled at the end of the study at 700 dpi were EIA positive resulting in an overall attack rate of 3/16 (19%). None of the transgenic mice expressing human prion protein that died or were euthanized up to 769 dpi were EIA positive and at study end point at 800 dpi 2 mice had positive EIA results (overall attack rate = 2/20 = 10%). The EIA optical density (OD) readings for all positive mice were at the lower end of the reference range (positive mice range, OD = 0.266-0.438; test positive reference range, OD = 0.250-4.000). To the authors’ knowledge, cervid-derived CWD isolates have not been successfully transmitted to transgenic mice expressing human prion protein. The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease

Author 

 item Greenlee, Justin item Moore, S - Orise Fellow item Smith, Jodi - Iowa State University item Kunkle, Robert item West Greenlee, M - Iowa State University Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: 8/12/2015 Publication Date: N/A Citation: N/A

Interpretive Summary:

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


223. Scrapie in white-tailed deer: a strain of the CWD agent that efficiently transmits to sheep?

Justin J. Greenleea, Robyn D. Kokemullera, S. Jo Moorea and Heather West Greenleeb

aVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, USA; bDepartment of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA

CONTACT Justin J. Greenlee Justin.Greenlee@ars.usda.gov

ABSTRACT

Scrapie is a transmissible spongiform encephalopathy of sheep and goats that is associated with widespread accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the natural prion disease of cervid species, and the tissue distribution of PrPSc in affected cervids is similar to scrapie in sheep. There are several lines of evidence that suggest that multiple strains of CWD exist, which may affect the agent’s potential to transmit to hosts of the same or different species. We inoculated white-tailed deer with the scrapie agent from ARQ/ARQ sheep, which resulted in 100% attack rates by either the intracranial or oronasal route of inoculation. When examining tissues from the brainstems or lymphoid tissues by traditional diagnostic methods such as immunohistochemistry or western blots, it is difficult to differentiate tissues from deer infected with scrapie from those infected with CWD. However, there are several important differences between tissues from scrapie-infected white-tailed deer (WTD scrapie) and those infected with CWD (WTD CWD). First, there are different patterns of PrPSc deposition in the brains of infected deer: brain tissues from deer with WTD scrapie had predominantly particulate and stellate immunoreactivity whereas those from deer with WTD-CWD had large aggregates and plaque-like deposits. Secondly, the incubation periods of WTD scrapie isolates are longer than CWD isolates in mice expressing cervid prion protein. Most notably, the transmission potential of these two isolates back to sheep is distinctly different. Attempts to transmit various CWD isolates to sheep by the oral or oronasal routes have been unsuccessful despite observation periods of up to 7 years. However, WTD scrapie efficiently transmitted back to sheep by the oronasal route. Upon transmission back to sheep, the WTD scrapie isolate exhibited different phenotypic properties when compared to the sheep receiving the original sheep scrapie inoculum including different genotype susceptibilities, distinct PrPSc deposition patterns, and much more rapid incubation periods in transgenic mice expressing the ovine prion protein. The scrapie agent readily transmits between sheep and deer after oronasal exposure. This could confound the identification of CWD strains in deer and the eradication of scrapie from sheep.


WEDNESDAY, DECEMBER 23, 2020 

***> BSE research project final report 2005 to 2008 SE1796 SID5 


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

**> see updated concerns with atypical BSE from feed and zoonosis...terry


***> Several experiments have demonstrated the ability of the AS agent to transmit within the natural host after intracranial inoculation [14–16]. 

***> One study found that the AS agent could transmit after a high oral dose of AS brain homogenate [17]. 

Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 


IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***


WEDNESDAY, DECEMBER 23, 2020 

Idiopathic Brainstem Neuronal Chromatolysis IBNC BSE TSE Prion a Review 2020


***> Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle. 

In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.


***> Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle. 

P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice

Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2

1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO

Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.

Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.

Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.

Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.

snip... 

In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.


CH1641


WEDNESDAY, JULY 31, 2019

The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L

49. The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L

E. D. Cassmanna,b, S. J. Moorea,b, R. D. Kokemullera, A. Balkema-Buschmannc, M. H. Groschupcand J. J. Greenleea

aVirus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, USA (EDC, SJM, RDK, JJG); bOak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664. (EDC, SJM), Department of Veterinary Pathology, Iowa State University, Ames, IA, USA (JDS); cInstitute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Isle of Riems, Germany (ABB, MHG)

CONTACT E. D. Cassmann eric.cassmann@usda.gov

ABSTRACT

Introduction: Transmissible mink encephalopathy (TME) is a fatal neurologic prion disease of farmed mink. Epidemiologic and experimental evidence following a Wisconsin outbreak in 1985 has linked TME to low-type bovine spongiform encephalopathy (BSE-L). Evidence suggests that farmed mink were likely exposed through feeding of BSE-L infected downer cattle. The interspecies transmission of TME to cattle has been documented. Recently, we demonstrated the susceptibility of sheep to cattle passaged TME by intracranial inoculation. The aim of the present study was to compare ovine passaged cattle TME to other prion diseases of food-producing animals. Using a bovine transgenic mouse model, we compared the disease phenotype of sheep TME to BSE-C and BSE-L.

Materials and Methods: Separate inoculants of sheep passaged TME were derived from animals with the VRQ/VRQ (VV136) and ARQ/VRQ (AV136) prion protein genotype. Transgenic bovinized mice (TgBovXV) were intracranially inoculated with 20 µl of 1% w/v brain homogenate. The disease phenotypes were characterized by comparing the attack rates, incubation periods, and vacuolation profiles in TgBovXV mice.

Results: The attack rate for BSE-C (13/13), BSE-L (18/18), and TMEVV (21/21) was 100%; whereas, the TMEAV group (15/19) had an incomplete attack rate. The average incubation periods were 299, 280, 310, and 541 days, respectively. The vacuolation profiles of BSE-L and TMEVV were most similar with mild differences observed in the thalamus and medulla. Vacuolation profiles from the BSE-C and TMEAV experimental groups were different than TMEVVand BSE-L.

Conclusion: Overall the phenotype of disease in TME inoculated transgenic mice was dependent on the sheep donor genotype (VV vs AV). The results of the present study indicate that TME isolated from VRQ/VRQ sheep is similar to BSE-L with regards to incubation period, attack rate, and vacuolation profile. Our findings are in agreement with previous research that found phenotypic similarities between BSE-L and cattle passaged TME in an ovine transgenic rodent model. In this study, the similarities between ovine TME and BSE-L are maintained after multiple interspecies passages.

Prion2019 Conference


2007


WEDNESDAY, JULY 31, 2019 

The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L


(b) the epidemiological and laboratory studies in the USA suggest the possibility of an occurrence of BSE infection in cattle as the origin of outbreaks of TME.

{c) there is also evidence from two experiments conducted in the USA that cattle, though susceptible to scrapie inocula prepared from sheep, express a pathology quite different from that of BSE and not convincingly diagnostic of an SE by histopathological criteria. Furthermore, neither of these studies can be regarded as a basis for extrapolation to the situation in the UK because the inocula used were either experimentally passaged or natural scrapie originating from Suffolk sheep; a minority breed in this country.


August 1988

Evidence That Transmissible Mink Encephalopathy Results From Feeding Infected Cattle


Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle 

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. 

snip... 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle... 




NOW, in 1979, it was proven that indeed U.S. scrapie strain that was transmitted to U.S. cattle, did NOT produce a Transmissible Spongiform Encephalopathy (TSE) like the U.K. B.S.E., but a TSE unlike the U.K. B.S.E. SO what does all this tell us? it tells me that there is a possibility that a strain of mad cow disease was circulating in the U.S.A. long, long, before originally thought, only left to be ignored, while incubating and spreading. 

3.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE.339 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture.340 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre.341 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, did not produce the same clinical signs of brain lesions characteristic of BSE.

3.58 There are several possible reasons why the experiment was not performed in the UK. It had been recommended by Sir Richard Southwood (Chairman of the Working Party on Bovine Spongiform Encephalopathy) in his letter to the Permanent Secretary of MAFF, Mr (now Sir) Derek Andrews, on 21 June 1988,342 though it was not specifically recommended in the Working Party Report or indeed in the Tyrrell Committee Report (details of the Southwood Working Party and the Tyrell Committee can be found in vol. 4: The Southwood Working Party, 1988–89 and vol. 11: Scientists after Southwood respectively). The direct inoculation of scrapie into calves was given low priority, because of its high cost and because it was known that it had already taken place in the USA.343 It was also felt that the results of such an experiment would be hard to interpret. While a negative result would be informative, a positive result would need to demonstrate that when scrapie was transmitted to cattle, the disease which developed in cattle was the same as BSE.344 Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345

3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility. 

337 Fraser, H., Bruce, M., Chree, A., McConnell, I. and Wells, G. (1992) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice, Journal of General Virology, 73, 1891–7; Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice: Strain Variation and the Species Barrier, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 343, 405–11 338 Bruce, M., Will, R., Ironside, J., McConell, I., Drummond, D., Suttie, A., McCordie, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. (1997) Transmissions to Mice Indicate that ‘New Variant’ CJD is Caused by the BSE Agent, Nature, 389, 498–501 339 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606–12 340 YB88/10.00/1.1 341 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814–20 342 YB88/6.21/1.2 343 YB88/11.17/2.4



31

Appendix I VISIT TO USA - OR A E WRATHALL — INFO ON BSE AND SCRAPIE

Dr Clark lately of the scrapie Research Unit, Mission Texas has

successfully transmitted ovine and caprine scrapie to cattle. The

experimental results have not been published but there are plans to do

this. This work was initiated in 1978. A summary of it is:-

Expt A 6 Her x Jer calves born in 1978 were inoculated as follows with

a 2nd Suffolk scrapie passage:-

i/c 1ml; i/m, 5ml; s/c 5ml; oral 30ml.

1/6 went down after 48 months with a scrapie/BSE-like disease.

Expt B 6 Her or Jer or HxJ calves were inoculated with angora Goat

virus 2/6 went down similarly after 36 months.

Expt C Mice inoculated from brains of calves/cattle in expts A & B were resistant, only 1/20 going down with scrapie and this was the reason given for not publishing.

Diagnosis in A, B, C was by histopath. No reports on SAF were given.

Dr Warren Foote indicated success so far in eliminating scrapie in offspring from experimentally— (and naturally) infected sheep by ET. He had found difficulty in obtaining embryos from naturally infected sheep (cf SPA).

Prof. A Robertson gave a brief accout of BSE. The us approach was to

32

accord it a very low profile indeed. Dr A Thiermann showed the picture in the "Independent" with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs.

BSE was not reported in USA.

4. Scrapie incidents (ie affected flocks) have shown a dramatic increase since 1978. In 1953 when the National Control scheme was started there were 10-14 incidents, in 1978 - 1 and in 1988 so far 60.

5. Scrapie agent was reported to have been isolated from a solitary fetus.

6. A western blotting diagnostic technique (? on PrP) shows some promise.

7. Results of a questionnaire sent to 33 states on the subject of the national sheep scrapie programme survey indicated

17/33 wished to drop it

6/33 wished to develop it

8/33 had few sheep and were neutral

Information obtained from Dr Wrathall‘s notes of a meeting of the u.s.

Animal Health Association at Little Rock, Arkansas Nov. 1988.

33

In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...


VISIT TO USA - DR AE WRATHALL - INFO ON BSE AND SCRAPIE

1. Dr. Clark lately of the Scrapie Research Unit, Mission Texas has successfully transmitted ovine & caprine Scrapie to cattle. The experimental results have not been published but there are plans to do this. This work was initiated in 1978. A summary of it is;

snip...see handwritten notes from this here;



IN CONFIDENCE

Perceptions of an unconventional slow virus diseases of animals in the U.S.A. G A H Wells

Report of a Visit to the USA April-May 1989

http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf


Thursday, June 09, 2016 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie Experiment 1964 

How Did CWD Get Way Down In Medina County, Texas? 

Confucius ponders... 

Could the Scrapie experiments back around 1964 at Moore Air Force near Mission, Texas, could this area have been ground zero for CWD TSE Prion (besides the CWD cases that have waltzed across the Texas, New Mexico border near WSMR Trans Pecos region since around 2001)? 

Epidemiology of Scrapie in the United States 1977 

snip... 

Scrapie Field Trial Experiments Mission, Texas A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission, Texas. 

It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease. 

The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. 

They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. 

Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. 

The station was divided into 2 areas: 

(1) a series of pastures and-pens occupied by male animals only, and 

(2) a series of pastures and pens occupied by females and young progeny of both sexes. 

... snip...

see full text ; 


Thursday, June 09, 2016 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964 How Did CWD Get Way Down In Medina County, Texas? 



doi:10.1016/S0021-9975(97)80022-9 Copyright © 1997 Published by Elsevier Ltd.

Second passage of a US scrapie agent in cattle

R.C. Cutlip, J.M. Miller and H.D. Lehmkuhl

United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA

Received 10 September 1996; accepted 31 July 1997. Available online 25 May 2006.

Summary

Scrapie and bovine spongiform encephalopathy are similar chronic neurodegenerative diseases of sheep and cattle. An earlier study showed that, on first passage in cattle, a US scrapie agent caused an encephalopathy that was distinct from bovine spongiform encephalopathy (BSE). The present report describes a second passage in cattle, carried out because diseases caused by the spongiform encephalopathy agents often change in character with additional passages in abnormal hosts. For this work, young calves were inoculated intracerebrally with a pooled suspension of brain from cattle that had died of encephalopathy after experimental inoculation with brain from scrapie-affected sheep. The second passage disease was essentially identical with the first passage disease, as judged by clinical signs, histopathological findings and distribution of "prion protein scrapie" (PrPsc). This represents additional evidence to suggest that the US sheep scrapie agent tested is incapable of causing BSE in cattle.




SUNDAY, OCTOBER 4, 2020 

Cattle Meat and Offal Imported from the United States of America, Canada and Ireland to Japan (Prions) Food Safety Commission of Japan


SEE HADLOW AND SCRAPIE !



P03.141 

 Aspects of the Cerebellar Neuropathology in Nor98 

 Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute, 

 Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans. 

 ***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans. 





 PR-26 

 NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS 

 R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway 

 Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion. 

 *** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease. 

 119 




A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes 

 Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,? +Author Affiliations 

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway 

***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005) 

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. *** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health. 


Monday, December 1, 2008 

 When Atypical Scrapie cross species barriers 

 Authors 

 Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France. 

 Content 

 Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.





WEDNESDAY, JUNE 10, 2020 

Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice

Atypical BSE prions showed a modification in their zoonotic ability after adaptation to sheep-PrP producing agents able to infect TgMet129 and TgVal129, bearing features that make them indistinguishable of sporadic Creutzfeldt-Jakob disease prions.

our results clearly indicate that atypical BSE adaptation to an ovine-PrP sequence could modify the prion agent to potentially infect humans, showing strain features indistinguishable from those of classic sCJD prions, even though they might or might not be different agents.

However, the expanding range of TSE agents displaying the capacity to transmit in human-PrP–expressing hosts warrants the continuation of the ban on meat and bone meal recycling and underscores the ongoing need for active surveillance



***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



WEDNESDAY, NOVEMBER 20, 2019 

Review: Update on Classical and Atypical Scrapie in Sheep and Goats 


FRIDAY, FEBRUARY 11, 2011 

Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues 


Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE


GAME FARM INDUSTRY WANTS TO COVER UP FINDINGS OF INCREASE RISK TO CJD FROM CERVID

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results regarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all. 


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasized by the finding that some strains of scrapie produce lesions identical to the once which characterize the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the scrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE

reference...

RB3.20

TRANSMISSION TO CHIMPANZEES

1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.

2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, ilp and i/v) :

3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.

4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.

5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

6. A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans' susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday' s meeting.

R. Bradley

23 September 1990

CVO (+Mr Wells' comments)

Dr T W A Little

Dr B J Shreeve

90/9.23/1.1.


IN CONFIDENCE CHIMPANZEES

CODE 18-77 Reference RB3.46

Some further information that may assist in decision making has been gained by discussion with Dr Rosalind Ridley.

She says that careful study of Gajdusek's work shows no increased susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys. She does not think it would tell you anything about the susceptibility to man. Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as severely as we did pigs and we know little of that source of scrapie. Comparisons would be difficult. She also would not expect the Home Office to sanction such experiments here unless there was a very clear and important objective that would be important for human health protection. She doubted such a case could be made. If this is the case she thought it would be unethical to do an experiment abroad because we could not do it in our own country.

Retrospectively she feels they should have put up more marmosets than they did. They all remain healthy. They would normally regard the transmission as negative if no disease resulted in five years.

We are not being asked for a decision but I think that before we made one we should gain as much knowledge as we can. If we decided to proceed we would have to bear any criticisms for many years if there was an adverse view by scientists or ­media. This should not be undertaken lightly. There is already some adverse comment here, I gather, on the pig experiment though that will subside.

The Gibbs' (as' distinct from Schellekers') study is somewhat different. We are merely supplying material for comparative studies in a laboratory with the greatest experience of human SEs in the world and it has been sanctioned by USDA (though we do not know for certain yet if chimpanzees specifically will be used). This would keep it at a lower profile than if we conducted such an experiment in the UK or Europe.

I consider we must have very powerful and defendable objectives to go beyond Gibbs' proposed experiments and should not initiate others just because an offer has been made.

Scientists have a responsibility to seek other methods of investigative research other than animal experimentation. At present no objective has convinced me we need to do research using Chimpanzees - a species in need of protection. Resisting such proposals would enable us to communicate that information to the scientist and the public should the need arise. A line would have been drawn.

CVO cc Dr T Dr B W A Little Dr B J Shreeve

R Bradley

26 September 1990

90/9.26/3.2


this is tse prion political theater here, i.e. what i call TSE PRION POKER...tss



3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs.

snip...

PAGE 26

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite its subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA viewed it as a wildlife problem and consequently not their province! ...page 26. 

snip...see;

IN CONFIDENCE

PERCEPTIONS OF UNCONVENTIONAL SLOW VIRUS DISEASE OF ANIMALS IN THE USA

GAH WELLS

REPORT OF A VISIT TO THE USA

APRIL-MAY 1989


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...


price of prion poker goes up for cwd to cattle;

Monday, April 04, 2016

*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***



FRIDAY, OCTOBER 23, 2020 

Scrapie TSE Prion Zoonosis Zoonotic, what if?


2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

PLEASE NOTE;

2.3.2. New evidence on the zoonotic potential of atypical BSE and atypical scrapie prion strains

Olivier Andreoletti, INRA Research Director, Institut National de la Recherche Agronomique (INRA) – École Nationale Vétérinaire de Toulouse (ENVT), invited speaker, presented the results of two recently published scientific articles of interest, of which he is co-author: ‘Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice’ (MarinMoreno et al., 2020) and ‘The emergence of classical BSE from atypical/Nor98 scrapie’ (Huor et al., 2019).

In the first experimental study, H-type and L-type BSE were inoculated into transgenic mice expressing all three genotypes of the human PRNP at codon 129 and into adapted into ARQ and VRQ transgenic sheep mice. The results showed the alterations of the capacities to cross the human barrier species (mouse model) and emergence of sporadic CJD agents in Hu PrP expressing mice: type 2 sCJD in homozygous TgVal129 VRQ-passaged L-BSE, and type 1 sCJD in homozygous TgVal 129 and TgMet129 VRQ-passaged H-BSE.


Scrapie

The two Commissions discussed the issue of ‘atypical’ scrapie in terms of notification requirements and the issue of the host genetic resistance. In response to questions of Members, the Code Commission clarified that ‘classical’ scrapie is reportable to the OIE but that ‘atypical’ scrapie is not reportable (in accordance with the recommendations made by the ad hoc Group on Atypical Scrapie and Atypical BSE, which met in November 2007). However, the sharing of scientific information on ‘atypical’ scrapie is encouraged. At this time, the Code Commission considered that more scientific information would be needed to fully address the issues associated with host genotype.

EU comment

4

OIE Terrestrial Animal Health Standards Commission / September 2010

The EU takes note of the fact that atypical scrapie is not an OIE listed disease. Nevertheless, it will remain notifiable in the EU. Moreover it must be stressed that any emergence of this disease should be notified to the OIE by Members and that scientific data should continue to be gathered.

snip...

Zoonotic Potential

Has transmission to humans been proven? (with the exception of artificial

circumstances) AND

Is human infection associated with severe consequences? (death or prolonged illness)



snip...




Since Commission Regulation (EU) 2021/1176 of 16 July 2021 amending Annexes III, V, VII and IX to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards genotyping of positive TSE cases in goats, the determination of age in ovine and caprine animals, the measures applicable in a herd or flock with atypical scrapie and the conditions for imports of products of bovine, ovine and caprine origin, was adopted, the 2-year intensified surveillance in case of atypical scrapie is not an obligation anymore.





***>  atypical scrapie is not an obligation anymore.

more TSE Prion Poker$$$


Sunday, March 28, 2010

Nor-98 atypical Scrapie, atypical BSE, spontaneous TSE, trade policy, sound science ?


Monday, November 30, 2009

***> USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE


WEDNESDAY, FEBRUARY 10, 2021 

SENATORS URGE BIDEN TO WITHDRAW SHEEP IMPORT RULE DUE TO SCRAPIE TSE Prion CONCERNS


WEDNESDAY, MARCH 24, 2021 

USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA


Sunday, January 10, 2021 

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019


I once again, with great urgency, strenuously urge the USDA and the OIE et al to revoke the exemption of the legal global trading of atypical Nor-98 scrapie TSE Prion, and make any and all, atypical scrapie, a mandatory reportable disease ASAP!

MONDAY, APRIL 12, 2021 

Transmission of the atypical/Nor98 scrapie agent to Suffolk sheep with VRQ/ARQ, ARQ/ARQ, and ARQ/ARR genotypes



''Given the results of this study, current diagnostic techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally.''

J Vet Diagn Invest. 

2021 May 28;10406387211017615. doi: 10.1177/10406387211017615. Online ahead of print.

Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie

Eric D Cassmann 1, Rylie D Frese 1, Justin J Greenlee 1

Affiliations expand


Abstract

The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. We compared the disease phenotype of sheep-adapted CWD to classical scrapie in sheep. We inoculated sheep intracranially with brain homogenate from first-passage mule deer CWD in sheep (sCWDmd). The attack rate in second-passage sheep was 100% (12 of 12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.

Keywords: PrPSc proteins; chronic wasting disease; deer; prions; scrapie; sheep.


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Second passage of chronic wasting disease of mule deer in sheep compared to classical scrapie after intracranial inoculation

Author item Cassmann, Eric item FRESE, RYLIE - Orise Fellow item Greenlee, Justin

Submitted to: Journal of Veterinary Diagnostic Investigation

Publication Type: Peer Reviewed Journal Publication Acceptance Date: 11/25/2020 Publication Date: N/A Citation: N/A

Interpretive Summary: Chronic wasting disease (CWD) is a fatal and uncurable brain disease of deer and elk that is related to a similar disease in sheep called scrapie. Both diseases are cause by a misfolded protein called a prion. The exact origin of CWD is unknown, but a possible origin could have been spread of sheep scrapie to deer. Previous research found indistinguishable traits in common between CWD in deer and scrapie in sheep. Additionally, it is unknown if deer CWD can naturally transmit to sheep. In this research, we show that abnormal prions spread throughout the body of sheep intracranially infected with CWD similar to how scrapie spreads in sheep. We compared two US classical scrapie strains to CWD in sheep and found that one of these strains is indistinguishable from sheep CWD. These results demonstrate that current diagnostic techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred in a natural setting. This research reinforces the need to continue ongoing cross-species transmission studies focusing on oral susceptibility of sheep to CWD and develop techniques to discriminate sheep CWD from sheep scrapie.

Technical Abstract: The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. In this experiment, we had two main objectives. The first objective was to determine if CWD adaptation in sheep alters the disease phenotype. The second objective was to determine if the disease phenotype of sheep adapted CWD is distinct from classical scrapie. We intracranially inoculated sheep with brain homogenate from first passage mule deer CWD in sheep (sCWDmd). The attack rate in second passage sheep was 100% (12/12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Taken together, these data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given the results of this study, current diagnostic techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.


''We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation.''
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies

Location: Virus and Prion Research

Title: Scrapie in white-tailed deer: a strain of the CWD agent that efficiently transmits to sheep?

Author

item Greenlee, Justin

item KOKEMULLER, ROBYN - US Department Of Agriculture (USDA)

item MOORE, S - Oak Ridge Institute For Science And Education (ORISE)

item WEST GREENLEE, M - Iowa State University

Submitted to: Meeting Abstract

Publication Type: Abstract Only

Publication Acceptance Date: 3/29/2019

Publication Date: N/A

Citation: N/A

Interpretive Summary:

Technical Abstract: Scrapie is a transmissible spongiform encephalopathy of sheep and goats that is associated with widespread accumulation of abnormal prion protein (PrPSc) in the central nervous and lymphoid tissues. Chronic wasting disease (CWD) is the natural prion disease of cervid species, and the tissue distribution of PrPSc in affected cervids is similar to scrapie in sheep. There are several lines of evidence that suggest that multiple strains of CWD exist, which may affect the agent’s potential to transmit to hosts of the same or different species. We inoculated white-tailed deer with the scrapie agent from ARQ/ARQ sheep, which resulted in 100% attack rates by either the intracranial or oronasal route of inoculation. When examining tissues from the brainstems or lymphoid tissues by traditional diagnostic methods such as immunohistochemistry or western blots, it is difficult to differentiate tissues from deer infected with scrapie from those infected with CWD. However, there are several important differences between tissues from scrapie-infected white-tailed deer (WTD scrapie) and those infected with CWD (WTD CWD). First, there are different patterns of PrPSc deposition in the brains of infected deer: brain tissues from deer with WTD scrapie had predominantly particulate and stellate immunoreactivity whereas those from deer with WTD-CWD had large aggregates and plaque-like staining. Secondly, the incubation periods of WTD scrapie isolates are longer than CWD isolates in mice expressing cervid prion protein. Most notably, the transmission potential of these two isolates back to sheep is distinctly different. Attempts to transmit various CWD isolates to sheep by the oral or oronasal routes have been unsuccessful despite observation periods of up to 7 years. However, WTD scrapie efficiently transmitted back to sheep by the oronasal route. Upon transmission back to sheep, the WTD scrapie isolate exhibited different phenotypic properties when compared to the sheep receiving the original sheep scrapie inoculum including different genotype susceptibilities, distinct PrPSc deposition patterns, and much more rapid incubation periods in transgenic mice expressing the ovine prion protein. The scrapie agent readily transmits between sheep and deer after oronasal exposure. This could confound the identication of CWD strains in deer and the eradication of scrapie from sheep.



Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease 

Authors

item Greenlee, Justin item Moore, S – item Smith, Jodi – item Kunkle, Robert item West Greenlee, M –

Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy.

In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies

Location: Virus and Prion Research

Title: Passage of scrapie to deer results in a new phenotype upon return passage to sheep) 

Author 

item Greenlee, Justin item Kokemuller, Robyn item Moore, Sarah item West Greenlee, N

Submitted to: Prion 

Publication Type: Abstract Only 

Publication Acceptance Date: 3/15/2017 

Publication Date: N/A 

Citation: N/A

Interpretive Summary:

Technical Abstract: Aims: We previously demonstrated that scrapie has a 100% attack rate in white-tailed deer after either intracranial or oral inoculation. Samples from deer that developed scrapie had two different western blot patterns: samples derived from cerebrum had a banding pattern similar to the scrapie inoculum, but samples from brainstem had a banding pattern similar to CWD. In contrast, transmission of CWD from white-tailed deer to sheep by the intracranial route has a low attack rate and to-date oronasal exposure has been unsuccessful. The purpose of this study was to determine if sheep are susceptible to oronasal exposure of the scrapie agent derived from white-tailed deer. 

Methods: At approximately 5 months of age, Suffolk sheep of various PRNP genotypes were challenged by the oronasal route with 10% brain homogenate derived from either the cerebrum or the brainstem of scrapie-affected deer. Genotypes represented in each inoculation group were VV136RR154QQ171 (n=2), AA136RR154QQ171 (n=2), and AV136RR154QR171 (n=1). After inoculation, sheep were observed daily for clinical signs. Upon development of clinical signs, sheep were killed with an overdose of pentobarbital sodium and necropsied. Tissue samples were tested for the presence of PrPSc by EIA, western blot, and immunohistochemistry (IHC). The No. 13-7 scrapie inoculum used for the deer has a mean incubation period of 20.1 months in sheep with the AA136RR154QQ171 genotype and 26.7 months in sheep with the VV136RR154QQ171 genotype. 

Results: Sheep inoculated oronasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum from the cerebrum that had a scrapie-like profile. The first sheep to develop clinical signs at approximately 29 months post inoculation had the VV136RR154QQ171 genotype. Eventually sheep of the AA136RR154QQ171 genotype developed clinical signs, but at a mean incubation of 52 months. At 62 months post-inoculation, none of the sheep inoculated with material from the deer brainstem have developed clinical disease. 

Conclusions: The No. 13-7 inoculum used in the original deer experiment readily infects white-tailed deer and sheep of various genotypes by the oronasal route. When inoculum is made from different brain regions of No 13-7 scrapie-infected deer from either cerebrum with a scrapie-like western blot pattern or brainstem with a CWD-like western blot pattern, sheep with the VV136RR154QQ171 genotype are the first to develop clinical signs. This is in contrast to the original No. 13-7 inoculum that has a faster incubation period in sheep with the AA136RR154QQ171 genotype. Similar to experiments conducted with CWD, sheep oronasally inoculated with brainstem material from deer with a CWD-like molecular profile have no evidence of disease after 62 months of incubation. While scrapie is not known to occur in free-ranging populations of white-tailed deer, experimental cases are difficult to differentiate from CWD. This work raises the potential concern that scrapie infected deer could serve as a confounding factor to scrapie eradication programs as scrapie from deer seems to be transmissible to sheep by the oronasal route.


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES 

Title: Transmission of the agent of sheep scrapie to deer results in PrPSc with two distinct molecular profiles 

Authors item Greenlee, Justin item Moore, Sarah - item Smith, Jodi item West Greenlee, Mary - item Kunkle, Robert Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: March 31, 2015 Publication Date: May 25, 2015 Citation: Greenlee, J., Moore, S.J., Smith, J.., West Greenlee, M.H., Kunkle, R. 2015. 

Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum. 

Prion 2015. p. S62. 

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes reveal PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. 

In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile type readily passes to deer. 


White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection 

Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS 

Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. Previous experiments demonstrated that white-tailed deer are susceptible to sheep-derived scrapie by intracranial inoculation. The purpose of this study was to determine susceptibility of white-tailed deer to scrapie after a natural route of exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal (1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. Non-inoculated deer were maintained as negative controls. All deer were observed daily for clinical signs. Deer were euthanized and necropsied when neurologic disease was evident, and tissues were examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and western blot (WB). One animal was euthanized 15 months post-inoculation (MPI) due to an injury. At that time, examination of obex and lymphoid tissues by IHC was positive, but WB of obex and colliculus were negative. Remaining deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation. 

see full text ; 






PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA 





White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation 

snip... 

It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that 

1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and 

2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate. 

This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. 

These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis. 



2012 PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA 

snip... 

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. 

Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like. 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie. 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. 

Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. 

This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD. 




2011 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie. 





Sunday, October 25, 2015 

USAHA Detailed Events Schedule – 119th USAHA Annual Meeting CAPTIVE LIVESTOCK CWD SCRAPIE TSE PRION 


COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989 
***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

https://www.nature.com/articles/srep11573 
Published: 06 September 2021
***> Chronic wasting disease: a cervid prion infection looming to spillover

Alicia Otero, Camilo Duque Velásquez, Judd Aiken & Debbie McKenzie 

Veterinary Research volume 52, Article number: 115 (2021) 


Monday, November 14, 2022 

Prion Diseases in Dromedary Camels (CPD) 2022 Review 

THURSDAY, NOVEMBER 10, 2022 

Annual Report of the Scientific Network on BSE‐TSE 2022

SUNDAY, OCTOBER 30, 2022 
Why is USDA "only" testing 25,000 samples a year?
https://bovineprp.blogspot.com/2022/10/why-is-usda-only-testing-25000-samples.html
SATURDAY, OCTOBER 8, 2022 

Cattle with the EK211 PRNP polymorphism are susceptible to the H-type bovine spongiform encephalopathy agent from either E211K or wild type donors after oronasal inoculation 

WHAT MAD COW FEED BAN???
let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$

ALABAMA MAD COW g-h-BSEalabama

In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.



her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).

This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine–human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.

Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA

NATURE|Vol 457|26 February 2009



> Epidemiological investigations conducted by USDA personnel failed to reveal any evidence of a feed source contaminated with TSE material fed to this animal



''This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. Cattle with the EK211 genotype are oronasally susceptible to small doses of the H-BSE agent from either EK211 or EE211 (wild type) donors. Wild-type EE211 cattle remained asymptomatic for the duration of the experiment with this small dose (0.1g) of inoculum. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.''

LMAO!

BANNED MAD COW FEED IN COMMERCE IN ALABAMA 

 Date: September 6, 2006 at 7:58 am PST PRODUCT

a) EVSRC Custom dairy feed, Recall # V-130-6;

b) Performance Chick Starter, Recall # V-131-6;

c) Performance Quail Grower, Recall # V-132-6;

d) Performance Pheasant Finisher, Recall # V-133-6.

CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.

REASON

Dairy and poultry feeds were possibly contaminated with ruminant based protein.

VOLUME OF PRODUCT IN COMMERCE 477.72 tons

DISTRIBUTION AL

______________________________



PRODUCT Bulk custom dairy pre-mixes,

Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 350 tons

DISTRIBUTION AL and MS

______________________________

PRODUCT

a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;

c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6

CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags

DISTRIBUTION AL, GA, MS, and TN

END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006

###



Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006

Date: August 6, 2006 at 6:16 pm PST PRODUCT

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE

Product manufactured from 02/01/2005 until 06/06/2006

RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 125 tons

DISTRIBUTION AL and FL

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

###



MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

______________________________

PRODUCT

a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;

d) Feather Meal, Recall # V-082-6 CODE

a) Bulk

b) None

c) Bulk

d) Bulk

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.

REASON

Possible contamination of animal feeds with ruminent derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons

DISTRIBUTION Nationwide

END OF ENFORCEMENT REPORT FOR July 12, 2006

###



10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

___________________________________

PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI

___________________________________

PRODUCT

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007


MONDAY, OCTOBER 10, 2022

Docket No: 2002N-0273 (formerly Docket No. 02N-0273) Substances Prohibited From Use in Animal Food and Feed Scientists Comments December 20, 2005


MONDAY, SEPTEMBER 19, 2022 

589.2001 BSE TSE regulations which prohibits the use of high-risk cattle material in feed for all animal species 2022


SUNDAY, OCTOBER 16, 2022 

USDA Transmissible Spongiform Encephalopathy TSE Prion Action Plan National Program 103 Animal Health 2022-2027 


TAHC OFFICIAL MINUTES OF THE 413th COMMISSION MEETING TSE PRION July 26, 2022

OFFICIAL MINUTES OF THE 413th COMMISSION MEETING Texas Animal Health Commission July 26, 2022 

snip...

• Chronic Wasting Disease (CWD):

 Positive WTD Breeder Facilities: seven in 2021

o Four have been depopulated

o One breeder depopulated his breeder deer on his own in mid-April.

o One signed a Genetic Herd Plan

o One is in litigation

 Trace Herds: 303 WTD facilities with connections to a positive facility

o 221 facilities released after meeting requirements (164 Breeder & 57 Release sites/DMP)

o 24 facilities are under a Herd Plan (2 Breeder & 22 Release Sites/DMP)

o 50 facilities are pending a signed Herd Plan (4 Breeder & 46 Release Sites/DMP)

o Eight out of State

 USDA VS review of the Texas CWD HCP UPDATE

o Adoption of proposed changes to Chapter 40, Chronic Wasting Disease, up for consideration today

o TAHC staff have worked diligently to develop and obtain USDA approval of consistent procedures to address noncompliance with federal and state HCP requirements.

o The TAHC CWD Field Manual has been updated, along with pertinent forms and agreements

o TAHC personnel participated in HCP Training and Q&A sessions hosted by USDA

o TAHC is working with TPWD to modify the TWIMS database to better support the HCP

o HCP participants have been notified in writing of changes in requirements

o Review of all enrolled herds has begun, and is to be completed in the next six months

snip...

21 CWD D4 TX (Depop/Genome Study) 9/14/2022 $429,598 $375,032 $375,032 $0 $56,566

21 CWD D4 TX (Depop) 9/14/2022 $274,968 $274,968 $274,968 $0 $0

 $9,500 from CWD Inspection was projected, $13,500 was received year to date

snip...

Item 14 – Consideration of and Possible Action on Adoption of Proposed Rules

Ms. Mary Luedeker discussed the following Regulation Proposals:

Each Regulation Proposal was reviewed and voted on individually.

a) Chapter 40, Chronic Wasting Disease

b) Chapter 51, Entry Requirements

a) The Texas Animal Health Commission proposes ADOPTION of amendments Title 4, Texas Administrative Code, Chapter 40 titled “Chronic Wasting Disease”. Specifically, proposed changes clarify, correct, and update information regarding CWD Herd Certification Program and disease management as well as aligning with revised USDA CWD Program Standards and applicable federal regulations. Changes to portions of §40.1 proposal define CWD-Exposed Herd and CWD-Positive Animals. §40.3 proposals include requiring immediate reporting upon discovery all farmed or captive cervids that escape or disappear and all free-ranging cervids that enter the facility and removes exception for lowering a herd status to First Year for herds that acquire animals from nonparticipating herds and that animal is “not detected” postmortem within the first year after entry into the herd. Finally, it requires all identification to be visually verified on 100% of the animals during a physical herd inspection.

The motion ADOPT amendments to Chapter 40, Chronic Wasting Disease, was made by Commissioner Vermedahl, and seconded by Commissioner Jordan. The motion carried.

snip...




TEXAS CWD TSE PRION 409 CASES CONFIRMED TO DATE TPWD EMERGENCY RULE ADDS TWO NEW SURVEILLANCE ZONES LOCATED PRIMARILY IN GILLESPIE AND LIMESTONE COUNTIES. 

TPWD Establishes Two New Surveillance Zones to Test for Chronic Wasting Disease 

NOV. 4, 2022 Media Contact: TPWD News, Business Hours, 512-389-8030 News 

AUSTIN –Texas Parks and Wildlife Commission has directed Texas Parks and Wildlife Department (TPWD) Executive Director Carter Smith to establish by emergency rule two new chronic wasting disease (CWD) surveillance zones located primarily in Gillespie and Limestone counties. The two new surveillance zones will go into effect prior to the start of the general hunting season beginning Nov. 5.

TPWD developed the zones following the detection of CWD earlier this year in a deer breeding facility located in Gillespie County and a deer breeding facility located in Limestone County.

Surveillance zones cover areas where the presence of CWD could reasonably be expected and enhance efforts to monitor and contain disease spread. Surveillance zone rules require hunters who harvest mule deer or white-tailed deer within the zone to bring their animals to a TPWD check station within 48 hours of harvest. Hunters must check each animal harvested and receive a CWD receipt before taking any part of that animal, including meat or quartered parts, from the zone.

“Testing for CWD allows wildlife biologists and animal health officials to get a clearer picture of the prevalence and distribution of the disease in those areas,” said TPWD Wildlife Division Director John Silovsky. “Proactive monitoring improves the state’s response time to a CWD detection and can greatly reduce the risk of the disease spreading further to neighboring captive and free-ranging populations.”

The surveillance zone located primarily in northwest Gillespie County encompasses 117,282 acres and includes parts of Kimble and Mason counties.

TPWD will establish two check stations – one in the city park in Harper, and the other on the grounds of the community center in Doss – along with self-serve drop boxes.

The surveillance zone located primarily in northern Limestone County encompasses 118,687 acres and includes parts of two other counties – Navarro and Hill – allowing access to a processor in Hubbard and a check station in Coolidge.

Hunters can find maps of these and other zones, along with locations and hours of check stations and self-serve drop boxes, on the TPWD website.

First recognized in 1967 in captive mule deer in Colorado, CWD has since been documented in captive and/or free-ranging deer in 30 states and four Canadian provinces. To date, 409 captive or free-ranging cervids — including white-tailed deer, mule deer, red deer and elk — in 16 Texas counties have tested positive for CWD.

CWD is a fatal neurological disease affecting certain susceptible cervid species including white-tailed deer, mule deer, red deer, and elk. The disease is highly transmissible and can remain infectious on the landscape for several years. If left unmanaged, CWD can have long-term impacts on the native deer herd and local economies. Clinical signs may include progressive weight loss; incoordination; excessive thirst, salivation, or urination; loss of appetite; teeth grinding; abnormal head posture; and/or drooping ears. These signs may not become evident until years after animals first become infected. Therefore, testing remains the best available tool for detecting CWD at an early stage and containing it with appropriate management strategies.

TPWD encourages hunters outside established surveillance and containment zones to voluntarily submit their harvest for testing at a check station, for free, before heading home from the field. Hunters who harvest a CWD-susceptible species outside a CWD zone and wish to have the animal tested should contact their local TPWD wildlife biologist. If someone is interested in becoming a certified CWD sample collector, they should contact their local TPWD wildlife biologist or regional Texas Animal Health Commission (TAHC) Region Office.

To date, the risk of CWD transmitting to humans appears to be low; however, as a precaution, public health authorities recommend not consuming meat from infected animals.

For more information about CWD, visit the TPWD web site or the TAHC web site.


SATURDAY, SEPTEMBER 24, 2022 

Texas Chronic Wasting Disease Confirmed at a Limestone County Deer Breeding Facility 

To date, 392 captive or free-ranging cervids, including white-tailed deer, mule deer, red deer and elk, in 16 Texas counties have tested positive for CWD. 


Counties where CWD Exposed Deer were Released


Number of CWD Exposed Deer Released by County


“Regarding the current situation involving CWD in permitted deer breeding facilities, TPWD records indicate that within the last five years, the seven CWD-positive facilities transferred a total of 2,530 deer to 270 locations in 102 counties and eight locations in Mexico (the destinations included 139 deer breeding facilities, 118 release sites, five Deer Management Permit sites, and three nursing facilities).'' ...

It is apparent that prior to the recent emergency rules, the CWD detection rules were ineffective at detecting CWD earlier in the deer breeding facilities where it was eventually discovered and had been present for some time; this creates additional concern regarding adequate mitigation of the risk of transferring CWD-positive breeder deer to release sites where released breeder deer come into contact with free-ranging deer...

Commission Agenda Item No. 5 Exhibit B

DISEASE DETECTION AND RESPONSE RULES

PROPOSAL PREAMBLE

1. Introduction. 

snip...

 A third issue is the accuracy of mortality reporting. Department records indicate that for each of the last five years an average of 26 deer breeders have reported a shared total of 159 escapes. Department records for the same time period indicate an average of 31 breeding facilities reported a shared total of 825 missing deer (deer that department records indicate should be present in the facility, but cannot be located or verified). 


October 6th-12th, 126th Meeting 2022 Resolutions 

RESOLUTION NUMBER: 30 Approved

SOURCE: COMMITTEE ON WILDLIFE

SUBJECT MATTER: Chronic Wasting Disease Carcass Disposal Dumpster Management and Biosecurity

BACKGROUND INFORMATION:

State and tribal wildlife agencies may identify collection points (dumpsters) within an identified chronic wasting disease (CWD) management zone for the disposal of hunter-harvested cervid carcasses to remove potentially infected carcasses off the landscape for disposal by an approved method (Gillin & Mawdsley, 2018, chap.14). However, depending on their placement and maintenance these dumpsters could potentially increase the risk of CWD transmission.

In several different states, photographic evidence has shown dumpsters in state identified CWD management zones overflowing with deer carcasses and limbs scattered on the land nearby. This could provide an opportunity for scavengers to potentially move infected carcass material to non-infected zones or increase contamination of the ground material around the dumpster’s location.

Federal guidance does not explicitly address uniform standards for collection locations for carcasses of free-ranging cervids; however, the United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services Program Standards on CWD outlines procedures for carcass disposal, equipment sanitation, and decontamination of premises for captive cervid facilities.

RESOLUTION:

The United States Animal Health Association urges the Association of Fish and Wildlife Agencies (AFWA), Wildlife Health Committee to further refine the AFWA Technical Report on Best Management Practices for Prevention, Surveillance, and Management of Chronic Wasting Disease; Chapter 14, Carcass Disposal to address the placement and management of chronic wasting disease carcass disposal dumpsters or other carcass collection containers.

Reference:

1. Gillin, Colin M., and Mawdsley, Jonathan R. (eds.). 2018. AFWA Technical Report on Best Management Practices for Surveillance, Management and Control of Chronic Wasting Disease. Association of Fish and Wildlife Agencies, Washington, D. C. 111 pp. 



PRION CONFERENCE 2022 ABSTRACTS CWD TSE PrP ZOONOSIS and ENVIRONMENTAL FACTORS 

Chronic wasting disease detection in environmental and biological samples from a taxidermy site

Paulina Sotoa,b, J. Hunter Reedc, Mitch Lockwoodc, and Rodrigo Moralesa,b aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bUniversidad Bernardo O’Higgins, Santiago, Chile; cTexas Parks and Wildlife Department, Texas, USA 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting captive and free-ranging cervids (e.g., mule deer, white-tailed deer, elk, reindeer, and moose). Nowadays, CWD is widely distributed in North America. It is suggested that CWD spreads due to direct animal contact or through exposure to contaminated environments previously inhabited by infected animals. CWD may also be spread through the movement of infected animals and carcasses. Taxidermy practices involve processing deer tissues (or whole animal carcasses). In many cases, the CWD status of processed animals is unknown. This can generate risks of disease spread and transmission. Taxidermy practices include different steps involving physical, chemical, and biological procedures. Without proper tissue handling or disposal practices, taxidermist facilities may become a focus of prion infectivity. 

Aims: In this study, we evaluated the presence of infectious prions in a taxidermy facility believed to be exposed to CWD. Detection was performed using the Protein Misfolding Cyclic Amplification (PMCA) technique in biological and inert environmental samples. Methods: We collected biological and environmental samples (plants, soils, insects, excreta, and others) from a taxidermy facility, and we tested these samples using the PMCA technique. In addition, we swabbed different surfaces possibly exposed to CWD-infected animals. For the PMCA reaction, we directly used a swab piece or 10 µL of 20% w/v homogenized samples. 

Results: The PMCA analysis demonstrated CWD seeding activity in some of the components of this facility, including insects involved in head processing, soils, and a trash dumpster. 

Conclusions: Different areas of this property were used for various taxidermy procedures. We were able to detect the presence of prions in 

i) soils that were in contact with the heads of dead animals, 

ii) insects involved in the cleaning of skulls, and 

iii) an empty dumpster where animal carcasses were previously placed. 

This is the first report demonstrating that swabbing is a helpful method to screen for prion infectivity on surfaces potentially contaminated with CWD. These findings are relevant as this swabbing and amplification strategy may be used to evaluate the disease status of other free-ranging and captive settings where there is a concern for CWD transmissions, such as at feeders and water troughs with CWD-exposed properties. This approach could have substantial implications for free-ranging cervid surveillance as well as in epidemiological investigations of CWD. 


PRION CONFERENCE 2022 ABSTRACTS CWD TSE PrP ZOONOSIS 

Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.

Samia Hannaouia, Ginny Chenga, Wiebke Wemheuerb, Walter J. Schulz-Schaefferb, Sabine Gilcha, and Hermann M. Schätzla aDepartment of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine & Hotchkiss Brain Institute; University of Calgary, Calgary, Canada; bInstitute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany

Aims: Chronic wasting disease (CWD) is a prion disease of cervids. Its rapid geographic expansion, shedding of infectivity and persistence in the environment for many years are of concern for humans. Here, we provide the first evidence by transmission experiments to different transgenic mouse models and bank voles that Cynomolgus macaques inoculated via different routes with CWD-positive cervid tissues harbor infectious prions that elicit clinical disease in rodents.

Material and Methods: We used tissue materials from macaques inoculated with CWD to inoculate transgenic mice overexpressing cervid PrPCfollowed by transmission into bank voles. We used RT-QuIC, immunoblot and PET blot analysis to assess brains, spinal cords, and tissues of the gastrointestinal tract (GIT) for the presence of prions.

Results: Our results show that of the macaque materials that induced clinical disease in transgenic mice,73% were from the CNS (46% spinal cord and 27% brain), and 27% were from the spleen, although attack rates were low around 20%. Clinical mice did not display PK-resistant PrPSc(PrPres) in immunoblot, but showed low-levels of prion seeding activity. Transmission into bank voles from clinical transgenic mice led to a 100% attack rate with typical PrPressignature in immunoblot, which was different from that of voles inoculated directly with CWD or scrapie prions. High-level prion seeding activity in brain and spinal cord and PrPresdeposition in the brain were present. Remarkably, we also found prion seeding activity in GIT tissues of inoculated voles. Second passage in bank voles led to a 100% attack rate in voles inoculated with brain, spinal cord and small intestine material from first round animals, with PrPresin immunoblot, prion seeding activity, and PrPresdeposition in the brain. Shortened survival times indicate adaptation in the new host. This also shows that prions detected in GIT tissues are infectious and transmissible. Transmission of brain material from sick voles back to cervidized mice revealed transmission in these mice with a 100% attack rate, and interestingly, with different biochemical signature and distribution in the brain.

Conclusions: Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including oral one. The disease manifested as atypical in macaques and transgenic mice, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism.

Funded by: The National Institutes of Health, USA, and the Alberta Prion Research Institute/Alberta Innovates Canada. Grant number: 1R01NS121016-01; 201,600,023

Acknowledgement: We thank Umberto Agrimi, Istituto Superiore di Sanità, Rome, Italy, and Michael Beekes, Robert-Koch Institute Berlin, Germany, for providing the bank vole model. We thank the University of Calgary animal facility staff and Dr. Stephanie Anderson for animal care.

Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD

Samia Hannaouia, Irina Zemlyankinaa, Sheng Chun Changa, Maria Immaculata Arifina, Vincent Béringueb, Debbie McKenziec, Hermann M. Schatzla, and Sabine Gilcha

aDepartment of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; Hotchkiss Brain Institute; University of Calgary, Calgary, Canada; bUniversité Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France; cDepartment of Biological Sciences, Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada

Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases.

Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles.

Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650 brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.

Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.

Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.

Funded by: We are grateful for financial support from the Natural Sciences and Engineering Research Council of Canada, the National Institutes of Health, Genome Canada, and the Alberta Prion Research Institute. SG is supported by the Canada Research Chairs program.

Acknowledgement: We thank Dr. Trent Bollinger, WCVM, University of Saskatchewan, Saskatoon, Canada, for providing brain tissue from the WTD-116AG isolate, Dr. Stéphane Haïk, ICM, Paris, France, for providing brain tissue from vCJD and sCJD cases, and Dr. Umberto Agrimi, Istituto Superiore di Sanità, Italy, for the bank vole model. We thank animal facility staff for animal care, Dr. Stephanie Anderson for veterinary oversight, and Yo-Ching Cheng for preparing recombinant PrP substrates. Thank you to Dr. Stephanie Booth and Jennifer Myskiw, Public Health Agency of Canada, Canada.

The chronic wasting disease agent from white-tailed deer is infectious to humanized mice after passage through raccoons

Eric Cassmanna, Xu Qib, Qingzhong Kongb, and Justin Greenleea

aNational Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA, USA bDepartments of Pathology, Neurology, National Center for Regenerative Medicine, and National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio, USA

Aims: Evaluate the zoonotic potential of the raccoon passaged chronic wasting disease (CWD) agent in humanized transgenic mice in comparison with the North American CWD agent from the original white-tailed deer host.

Material and Methods: Pooled brain material (GG96) from a CWD positive herd was used to oronasally inoculate two white-tailed deer with wild-type prion protein genotype and intracranially inoculate a raccoon. Brain homogenates (10% w/v) from the raccoon and the two white-tailed deer were used to intracranially inoculate separate groups of transgenic mice that express human prion protein with methionine (M) at codon 129 (Tg40h). Brains and spleens were collected from mice at experimental endpoints of clinical disease or approximately 700 days post-inoculation. Tissues were divided and homogenized or fixed in 10% buffered neutral formalin. Immunohistochemistry, enzyme immunoassay, and western blot were used to detect misfolded prion protein (PrPSc) in tissue.

Results: Humanized transgenic mice inoculated with the raccoon passaged CWD agent from white-tailed deer exhibited a 100% (12/12) attack rate with an average incubation period of 605 days. PrPScwas detected in brain tissue by enzyme immunoassay with an average optical density of 3.6/4.0 for positive brains. PrPScalso was detected in brain tissue by western blot and immunohistochemistry. No PrPScwas detected in the spleens of mice inoculated with the raccoon passaged CWD agent. Humanized mice inoculated with the CWD agent from white-tailed deer did not have detectable PrPScusing conventional immunoassay techniques.

Conclusions: The host range of the CWD agent from white-tailed deer was expanded in our experimental model after one passage through raccoons.

Funded by: This research was funded in its entirety by congressionally appropriated funds to the United States Department of Agriculture, Agricultural Research Service. The funders of the work did not influence study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgement: We thank Quazetta Brown, Lexi Frese, Rylie Frese, Kevin Hassall, Leisa Mandell, and Trudy Tatum for providing excellent technical support to this project.

Stable and highly zoonotic cervid prion strain is possible

Manuel Camacho, Xu Qi, Liuting Qing, Sydney Smith, Jieji Hu, Wanyun Tao, Ignazio Cali, and Qingzhong Kong Department of Pathology, Case Western Reserve University, Cleveland, USA

Aims: Whether CWD prions can infect humans remains unclear despite the very substantial scale and long history of human exposure of CWD in some areas. Multiple in vitro conversion experiments and in vivo animal studies suggest that the CWD-to-human transmission barrier is not unbreakable. A major public health concern on CWD zoonosis is the emergence of highly zoonotic CWD strains. We aim to address the question of whether highly zoonotic CWD strains are possible.

Material and Methods: We inoculated a few sCJD brain samples into cervidized transgenic mice, which were intended as negative controls for bioassays of brain tissues from sCJD cases who had hunted or consumed vension from CWD-endemic states. Some of these mice became infected and their brain tissues were further examined by serial passages in humanized or cervidized mice.

Results: Passage of sCJDMM1 in transgenic mice expressing elk PrP (Tg12) resulted in a ‘cervidized’ CJD strain that we termed CJDElkPrP. We observed 100% transmission of CJDElkPrPin transgenic mice expressing human PrP (Tg40h). We passaged CJDElkPrPtwo more times in the Tg12 mice. We found that such second and third passage CJDElkPrPprions also led to 100% infection in the Tg40h mice. In contrast, we and others found zero or poor transmission of natural elk CWD isolates in humanized mice, despite that natural elk CWD isolates and CJDElkPrPshare the same elk PrP sequence.

Conclusions: Our data demonstrate that highly zoonotic cervid prion strains are not only possible but also can be stably maintained in cervids and that CWD zoonosis is prion strain-dependent.

Funded by: NIH

Grant number: R01NS052319, R01NS088604, R01NS109532

Acknowledgement: We want to thank the National Prion Disease Pathology Surveillance Center and Drs. Allen Jenny and Katherine O’Rourke for providing the sCJD samples and the CWD samples, respectively.

Adaptation of chronic wasting disease (CWD) prion strains in hosts with different PRNP genotypes

Camilo Duque Velasqueza,c, Elizabeth Triscotta,c, Chiye Kima,c, Diana Morenoa,c, Judd Aikenb,c, and Debbie McKenziea,c

aDepartment of Biological Science, University of Alberta, Edmonton, AB T6G 2G8, Canada; bDepartment of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2G8, Canada; cCentre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada

Aims: The contagious nature of CWD epizootics and the PrPCamino acid variation of cervids (and susceptible sympatric species) guarantee the expansion of prion conformational diversity and selective landscapes where new strains can arise. CWD strains can have novel transmission properties including altered host range that may increase zoonotic risk as circulating strains diversify and evolve. We are characterizing the host adaptability of characterized CWD strains as well as CWD isolates from different cervid species in various enzootic regions.

Material and Methods: Characterized CWD strains as well as a number of isolates from hunter-harvested deer were bioassayed in our rodent panel (transgenic mice expressing cervid alleles G96, S96 and H95-PrPC, elk PrPC, bovine PrPC, and both hamsters and non-transgenic laboratory mice). Strain characteristics were compared using computer based scoring of brain pathology (e.g. PrPCWDbrain distribution), western blot and protein misfolding cyclic amplification (PMCA).

Results: Transmission of various isolates resulted in the selection of strain mixtures in hosts expressing similar PrPC, particularly for polymorphic white-tailed deer and for Norwegian reindeer. As of the second passage, transmission of P153 moose prions from Norway has not resulted in emergence of strains with properties similar to any North American CWD strains in our taxonomic collection (Wisc-1, CWD2, H95+and 116AG).

Conclusions: Our data indicates polymorphic white-tailed deer can favor infection with more than one strain. Similar to transmission studies of Colorado CWD isolates from cervids expressing a single PrPCprimary structure, the isolate from Norway reindeer (V214) represents a strain mixture, suggesting intrinsic strain diversity in the Nordfjella epizootic. The diversity of CWD strains with distinct transmission characteristics represents a threat to wildlife, sympatric domestic animals and public health.

Funded by: Genome Canada and Genome Alberta (Alberta Prion Research Institute and Alberta Agriculture & Forestry); NSERC Grant number: #LSARP 10205; NSERC RGPIN-2017-05539

Acknowledgement: We would like to thank Margo Pybus (Alberta Environment and Parks) Trent Bollinger (University of Saskatchewan) for providing us with tissue samples from hunter-harvested deer and Sylvie Benestad for providing moose and reindeer samples.

Application of PMCA to understand CWD prion strains, species barrier and zoonotic potential

Sandra Pritzkowa, Damian Gorskia, Frank Ramireza, Fei Wanga, Glenn C. Tellingb, Justin J. Greenleec, Sylvie L. Benestadd, and Claudio Sotoa aDepartment of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA; bDepartment of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA; cVirus and Prion Research Unit, United States Department of Agriculture, Ames, Iowa, USA; dNorwegian Veterinary Institute, OIE Reference Laboratory for CWD, Ås, Norway

Aims: Chronic wasting disease (CWD) is a prion disease affecting various species of cervids that continues to spread uncontrollably across North America and has recently been detected in Scandinavia (Norway, Sweden and Finland). The mechanisms responsible for the natural transmission of CWD are largely unknown. Furthermore, the risk of CWD transmission to other species, including humans, is also unknown and remains a dangerous enigma. In this study, we investigated the potential of CWD prions to infect several other animal species (sheep, cattle, pig, hamster, and mouse) including humans, by examining their capacity to convert the normal prion protein of distinct species in a PMCA reaction. Moreover, we also investigated whether the in vivo passage of CWD through intermediate species alters their capacity for zoonotic transmission, which may represent a major hazard to human health.

Material and Methods: For these studies, we used brain material from CWD-infected white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis), and mule deer (Odocoileus hemionus) as species native to North America. We also used CWD-infected Moose (Alces alces), reindeer (Rangifer tarandus) and red deer (Cervus elaphus) as Norwegian cervids. We also used brains from cattle, sheep and pigs experimentally infected by CWD. To study interspecies-transmission and zoonotic potential, samples were tested via PMCA for the conversion of PrPCinto PrPScusing different combinations of inoculum and host species. Based on these analyses we estimated the spillover and zoonotic potential for different CWD isolates. We define and quantify spillover and zoonotic potential indices as the efficiency by which CWD prions sustain prion generation in vitro at the expense of normal prion proteins from various mammals and human, respectively.

Results: Our results show that prions from some cervid species, especially those found in Northern Europe, have a higher potential to transmit disease characteristics to other animals. Conversely, CWD-infected cervids originated in North America appear to have a greater potential to generate human PrPSc. We also found that in vivo transmission of CWD to cattle, but not to sheep or pigs substantially increases the ability of these prions to convert human PrPCby PMCA.

Conclusions: Our findings support the existence of different CWD prion strains with distinct spillover and zoonotic potentials. We also conclude that transmission of CWD to other animal species may increase the risk for CWD transmission to humans. Our studies may provide a tool to predict the array of animal species that a given CWD prion could affect and may contribute to understanding the risk of CWD for human health.

Funded by: National Institute of Health Grant number: P01 AI077774

Generation of human chronic wasting disease in transgenic mice

Zerui Wanga, Kefeng Qinb, Manuel V. Camachoa, Ignazio Cali a,c, Jue Yuana, Pingping Shena, Tricia Gillilanda, Syed Zahid Ali Shaha, Maria Gerasimenkoa, Michelle Tanga, Sarada Rajamanickama, Anika Yadatia, Lawrence B. Schonbergerd, Justin Greenleee, Qingzhong Konga,c, James A. Mastriannib, and Wen-Quan Zoua,c

aDepartment of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; bDepartment of Neurology and Center for Comprehensive Care and Research on Memory Disorders, the University of Chicago Pritzker School of Medicine, Chicago, USA; cNational Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; dDivision of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA; eVirus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA, USA

Aims: Chronic wasting disease (CWD) results from the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC) in the brains of deer and elk. It has been spreading rapidly throughout many regions of North America, exported inadvertently to South Korea, and more recently identified in Europe. Mad cow disease has caused variant Creutzfeldt-Jakob disease (vCJD) in humans and is currently the only known zoonotic prion disease. Whether CWD is transmissible to humans remains uncertain. The aims of our study were not only to confirm whether CWD prion isolates can convert human brain PrPCinto PrPScin vitro by serial protein misfolding cyclic amplification (sPMCA) but also to determine whether the sPMCA-induced CWD-derived human PrPScis infectious.

Material and Methods: Eight CWD prion isolates from 7 elks and 1 deer were used as the seeds while normal human brain homogenates containing either PrP-129 MM (n = 2) or PrP-129 VV (n = 1) were used as the substrates for sPMCA assay. A normal elk brain tissue sample was used as a negative control seed. Two lines of humanized transgenic (Tg) mice expressing either human PrP-129VV or −129 MM polymorphism were included for transmission studies to determine the infectivity of PMCA-amplified PrPSc. Wester blotting and immunohistochemistry and hematoxylin & eosin staining were used for determining PrPScand neuropathological changes of inoculated animals.

Results: We report here the generation of the first CWD-derived infectious human PrPScusing elk CWD PrPScto initiate conversion of human PrPCfrom normal human brain homogenates with PMCA in vitro. Western blotting with a human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPScwas derived from the human brain PrPCsubstrate. Two lines of humanized transgenic mice expressing human PrPCwith either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPScpatterns and neuropathological changes in the brain.

Conclusions: Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSchas the potential to overcome the species barrier and directly convert human PrPCinto infectious PrPScthat can produce bona fide prion disease when inoculated into humanized transgenic mice.

Funded by: CJD Foundation and NIH

Mortality surveillance of persons potentially exposed to chronic wasting disease

R.A. Maddoxa, R.F. Klosb, L.R. Willb, S.N. Gibbons-Burgenerb, A. Mvilongoa, J.Y. Abramsa, B.S. Applebyc, L.B. Schonbergera, and E.D. Belaya aNational Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, USA; bWisconsin Department of Health Services (WDHS), Division of Public Health, Madison, USA; cNational Prion Disease Pathology Surveillance Center (NPDPSC), Case Western Reserve University, Cleveland, USA

Aims: It is unknown whether chronic wasting disease (CWD), a prion disease of cervids, can infect people, but consumption of meat from infected animals would be the most likely route of transmission. Wisconsin Department of Health Services, Division of Public Health (WDHS) personnel maintain a database consisting of information collected from hunters who reported eating, or an intention to eat, venison from CWD-positive cervids. These data, collected since 2003, allow for the evaluation of causes of mortality in individuals potentially exposed to CWD.

Material and Methods: The WDHS database contains the name, date of birth, when available, year of CWD-positive deer harvest, and city and state of residence for each potentially exposed individual. The database also includes information on how the deer was processed (self-processed or by a commercial operator) and when applicable, names of others with whom the venison was shared. Duplicate entries (i.e., those who consumed venison from CWD-positive deer in multiple hunt years) are determined by first name, last name, and date of birth. All names in the database are cross-checked with reported cases of human prion disease in Wisconsin and cases in the National Prion Disease Pathology Surveillance Center (NPDPSC) diagnostic testing database. Persons with date of birth available are also cross-checked with prion disease decedents identified through restricted-use national multiple cause-of-death data via a data use agreement with the National Center for Health Statistics (NCHS).

Results: The database currently consists of 1561 records for hunt years 2003–2017 and 87 additional records for 2018–2019. Of these, 657 records have accompanying date of birth; 15 entries were removed as duplicates leaving 642 unique individuals. Of these individuals, 278 of 426 (66%) who ate venison from a CWD-positive deer and provided processing information reported self-processing. No matches were found among any persons in the database cross-checked with WDHS human prion disease surveillance data, NPDPSC data (February 2022 update), and NCHS data through 2020.

Conclusions: Because of the linkage of person and CWD-positive animal in the WDHS database, reviewing the cause of mortality in potentially exposed persons is possible. The number of individuals cross-checked so far is likely only a small percentage of those potentially exposed to CWD in Wisconsin, and many more years of vital status tracking are needed given an expected long incubation period should transmission to humans occur. Nevertheless, the findings of this ongoing review are thus far reassuring.

Prion disease incidence, United States, 2003–2020

R.A. Maddoxa, M.K. Persona, K. Kotobellib, A. Mvilongoa, B.S. Applebyb, L.B. Schonbergera, T.A. Hammetta, J.Y. Abramsa, and E.D. Belaya aNational Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, USA; bNational Prion Disease Pathology Surveillance Center (NPDPSC), Case Western Reserve University, Cleveland, USA

Aims: Mortality data, in conjunction with neuropathological and genetic testing results, are used to estimate prion disease incidence in the United States.

Material and Methods: Prion disease decedents for 2003–2020 were identified from restricted-use U.S. national multiple cause-of-death data, via a data use agreement with the National Center for Health Statistics, and from the National Prion Disease Pathology Surveillance Center (NPDPSC) database. NPDPSC decedents with neuropathological or genetic test results positive for prion disease for whom no likely match was found in the NCHS multiple cause-of-death data were added as cases for incidence calculations, while those with negative neuropathology results but with cause-of-death data indicating prion disease were removed. Unmatched cases in the NPDPSC database lacking neuropathological testing but with a positive real-time quaking-induced conversion (RT-QuIC) test result were additionally assessed. Age-specific and age-adjusted average annual incidence rates were calculated from the combined data; the year 2000 as the standard population and the direct method were used for age-adjustment.

Results: A total of 7,921 decedents were identified as having prion disease during 2003–2020 for an age-adjusted average annual incidence of 1.2 per million population. The age-adjusted incidence between males and females (1.3 and 1.1 per million, respectively) differed significantly (p < 0.0001). The age-specific average annual incidence among those <55 and ≥55 years of age was 0.2 and 4.8 per million, respectively; incidence among those ≥65 was 6.1 per million. Eighteen cases were <30 years of age for an age-specific incidence of 8.0 per billion; only 6 of these very young cases were sporadic (3 sporadic CJD, 3 sporadic fatal insomnia), with the rest being familial (9), variant (2), or iatrogenic (1). The age-adjusted annual incidence for the most recent year of data, 2020, was 1.3 per million. However, assessment of RT-QuIC positive cases lacking neuropathology in the NPDPSC database suggested that approximately 20% more cases may have occurred in that year; the addition of a subset of these cases that had date of death information available (n = 44) increased the 2020 rate to 1.4 per million.

Conclusions: Mortality data supplemented with the results of neuropathological, CSF RT-QuIC, and genetic testing can be used to estimate prion disease incidence. However, the identification in the NPDPSC database of RT-QuIC-positive cases lacking date of death information suggests that this strategy may exclude a number of probable prion disease cases. Prion disease cases <30 years of age, especially those lacking a pathogenic mutation, continue to be very rare.

Shedding of Chronic Wasting Disease Prions in Multiple Excreta Throughout Disease Course in White-tailed Deer

Nathaniel D. Denkersa, Erin E. McNultya, Caitlyn N. Krafta, Amy V. Nallsa, Joseph A. Westricha, Wilfred Goldmannb, Candace K. Mathiasona, and Edward A. Hoovera

aPrion Research Center, College of Veterinary Medicine and Biological Sciences, Department of Microbiology, Immunology, and Pathology; Colorado State University, Fort Collins, CO, USA; bDivision of Infection and Immunity, The Roslin Institute and the Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, UK

Aims: Chronic wasting disease (CWD) now infects cervids in South Korea, North America, and Scandinavia. CWD is unique in its efficient transmission and shedding of prions in body fluids throughout long course infections. Questions remain as to the magnitude of shedding and the route of prion acquisition. As CWD continues to expand, the need to better understand these facets of disease becomes more pertinent. The purpose of the studies described was to define the longitudinal shedding profile of CWD prions in urine, saliva, and feces throughout the course of infection in white-tailed deer.

Material and Methods: Twelve (12) white-tailed deer were inoculated with either 1 mg or 300ng of CWD. Urine, saliva, and feces were collected every 3-month post-inoculation (MPI) throughout the study duration. Cohorts were established based on PNRP genotype: codon 96 GG (n = 6) and alternate codons 96 GS (n = 5) & 103NT (n = 1). Urine and saliva were analyzed using iron-oxide magnetic extraction (IOME) and real-time quaking induced conversion (RT-QuIC)(IQ). Feces were subjected to IOME, followed by 4 rounds protein misfolding cyclic amplification (PMCA) with products analyzed by RT-QuIC (IPQ). To determine whether IPQ may be superior to IQ, a subset of urine and saliva were also tested by IPQ. Results were compared with clinical disease status.

Results: Within the 96 GG cohort, positive seeding activity was detected in feces from all deer (100%), in saliva from 5 of 6 (83%), and in urine from 4 of 6 (66%). Shedding in all excreta occurred at, or just after, the first positive tonsil biopsy result. In the 96 GS/103NT cohort, positive seeding activity could be detected in feces from 3 of 6 (50%) deer, saliva in 2 of 6 (33%), and urine in 1 of 6 (16%). Shedding in excreta was detected >5 months after the first tonsil positive result. Four of six 96 GG deer developed clinical signs of CWD, whereas only 2 of the 96 GS/103NT did. Shedding was more frequently detected in deer with clinical disease. The IPQ protocol did not significantly improve detection in saliva or urine samples, however, it significantly augmented detection in feces by eliminating non-specific background commonly experienced with IQ. Negative control samples remained negative in samples tested.

Conclusions: These studies demonstrate: (a) CWD prion excretion occurs throughout infection; (2) PRNP genotype (GG≫GS/NT) influences the excreta shedding; and (3) detection sensitivity in excreta can vary with different RT-QuIC protocols. These results provide a more complete perspective of prion shedding in deer during the course of CWD infection.

Funded by: National Institutes of Health (NIH)

Grant number: RO1-NS061902-09 R to EAH, PO1-AI077774 to EAH, and R01-AI112956-06 to CKM

Acknowledgement: We abundantly thank Sallie Dahmes at WASCO and David Osborn and Gino D’Angelo at the University of Georgia Warnell School of Forestry and Natural Resources for their long-standing support of this work through provision of the hand-raised, CWD-free, white-tailed deer used in these studies

Large-scale PMCA screening of retropharyngeal lymph nodes and in white-tailed deer and comparisons with ELISA and IHC: the Texas CWD study

Rebeca Benaventea, Paulina Sotoa, Mitch Lockwoodb, and Rodrigo Moralesa

aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bTexas Park and Wildlife Department, Texas, USA

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that affects various species of cervids, and both free-ranging and captive animals. Until now, CWD has been detected in 3 continents: North America, Europe, and Asia. CWD prevalence in some states may reach 30% of total animals. In Texas, the first case of CWD was reported in a free-range mule deer in Hudspeth and now it has been detected in additional 14 counties. Currently, the gold standard techniques used for CWD screening and detection are ELISA and immunohistochemistry (IHC) of obex and retropharyngeal lymph nodes (RPLN). Unfortunately, these methods are known for having a low diagnostic sensitivity. Hence, many CWD-infected animals at pre-symptomatic stages may be misdiagnosed. Two promising in vitro prion amplification techniques, including the real-time quaking-induced conversion (RT-QuIC) and the protein misfolding cyclic amplification (PMCA) have been used to diagnose CWD and other prion diseases in several tissues and bodily fluids. Considering the low cost and speed of RT-QuIC, two recent studies have communicated the potential of this technique to diagnose CWD prions in RPLN samples. Unfortunately, the data presented in these articles suggest that identification of CWD positive samples is comparable to the currently used ELISA and IHC protocols. Similar studies using the PMCA technique have not been reported.

Aims: Compare the CWD diagnostic potential of PMCA with ELISA and IHC in RPLN samples from captive and free-range white-tailed deer. Material and Methods: In this study we analyzed 1,003 RPLN from both free-ranging and captive white-tailed deer collected in Texas. Samples were interrogated with the PMCA technique for their content of CWD prions. PMCA data was compared with the results obtained through currently approved techniques.

Results: Our results show a 15-fold increase in CWD detection in free-range deer compared with ELISA. Our results unveil the presence of prion infected animals in Texas counties with no previous history of CWD. In the case of captive deer, we detected a 16% more CWD positive animals when compared with IHC. Interestingly, some of these positive samples displayed differences in their electroforetic mobilities, suggesting the presence of different prion strains within the State of Texas.

Conclusions: PMCA sensitivity is significantly higher than the current gold standards techniques IHC and ELISA and would be a good tool for rapid CWD screening.

Funded by: USDA

Grant number: AP20VSSPRS00C143

ATYPRION project: assessing the zoonotic potential of interspecies transmission of CWD isolates to livestock (preliminary results).

Enric Vidala,b, Juan Carlos Espinosac, Samanta Gilera,b, Montserrat Ordóñeza,b, Guillermo Canteroa,b, Vincent Béringued, Justin J. Greenleee, and Juan Maria Torresc

aUnitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia; bIRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia; cCentro de Investigación en Sanidad Animal, CISA-INIA-CSIC, Valdeolmos, Madrid, Spain; dMolecular Virology and Immunology, French National Research Institute for Agriculture, Food and Environment (INRAE), Université Paris-Saclay, Jouy-en-Josas, France; eVirus and Prion Research Unit, National Animal Disease Center, ARS, United States Department of Agriculture, Ames, IA, USA

Aims: Since variant Creutzfeldt-Jackob disease was linked to the consumption of bovine spongiform encephalopathy prions, the study of the pathobiological features of animal prions, particularly their zoonotic potential, is of great concern to the scientific community and public health authorities. Furthermore, interspecies transmission of prions has been demonstrated as a putative evolutionary mechanism for prions, that can lead to the emergence of new features including the ability to infect humans. For instance, small ruminants’ atypical scrapie prions, when propagated in a bovine or porcine host, can shift to a classical BSE phenotype thus posing a potential risk in case of human exposure. So far, no hard evidence of zoonotic transmission of cervids’ chronic wasting disease (CWD) to humans has been published, however experimental transmission to bovine, ovine and caprine hosts has been achieved. Our goal is to investigate if, once passaged through these domestic species, CWD prions might become infectious to humans.

Material and Methods: Different CWD isolates experimentally adapted to cattle, sheep and goat (Hamir et al, 2005, 2006, 2007, Greenlee et al 2012) have been intracerebrally inoculated to transgenic mouse models expressing the human cellular prion protein either homozygous for methionine or valine at codon 129 (Tg340-Met129 and Tg362-Val129). Additionally, inocula obtained from experimental transmission of elk CWD to ovinized (Tg501) and bovinized (BoTg110) transgenic mice, as well as white-tailed deer CWD to BoTg110 mice, are currently being bioassayed in both human PrPCtransgenic models.

Results and conclusions: No evidence of transmission has been found on first passage for bovine adapted elk and mule deer CWD to none of the humanized models. The remaining bioassays are ongoing without showing clinical signs yet, as well as second passages for the negative 1stpassages.

Funded by: La Marató de TV3 foundation. Grant number: ATYPRION (201,821–30-31-32)


PRION CONFERENCE 2022 ABSTRACTS CWD TSE PrP ZOONOSIS and ENVIRONMENTAL FACTORS 

Chronic wasting disease detection in environmental and biological samples from a taxidermy site

Paulina Sotoa,b, J. Hunter Reedc, Mitch Lockwoodc, and Rodrigo Moralesa,b aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bUniversidad Bernardo O’Higgins, Santiago, Chile; cTexas Parks and Wildlife Department, Texas, USA 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting captive and free-ranging cervids (e.g., mule deer, white-tailed deer, elk, reindeer, and moose). Nowadays, CWD is widely distributed in North America. It is suggested that CWD spreads due to direct animal contact or through exposure to contaminated environments previously inhabited by infected animals. CWD may also be spread through the movement of infected animals and carcasses. Taxidermy practices involve processing deer tissues (or whole animal carcasses). In many cases, the CWD status of processed animals is unknown. This can generate risks of disease spread and transmission. Taxidermy practices include different steps involving physical, chemical, and biological procedures. Without proper tissue handling or disposal practices, taxidermist facilities may become a focus of prion infectivity. Aims: In this study, we evaluated the presence of infectious prions in a taxidermy facility believed to be exposed to CWD. Detection was performed using the Protein Misfolding Cyclic Amplification (PMCA) technique in biological and inert environmental samples. Methods: We collected biological and environmental samples (plants, soils, insects, excreta, and others) from a taxidermy facility, and we tested these samples using the PMCA technique. In addition, we swabbed different surfaces possibly exposed to CWD-infected animals. For the PMCA reaction, we directly used a swab piece or 10 µL of 20% w/v homogenized samples. Results: The PMCA analysis demonstrated CWD seeding activity in some of the components of this facility, including insects involved in head processing, soils, and a trash dumpster. Conclusions: Different areas of this property were used for various taxidermy procedures. We were able to detect the presence of prions in i) soils that were in contact with the heads of dead animals, ii) insects involved in the cleaning of skulls, and iii) an empty dumpster where animal carcasses were previously placed. This is the first report demonstrating that swabbing is a helpful method to screen for prion infectivity on surfaces potentially contaminated with CWD. These findings are relevant as this swabbing and amplification strategy may be used to evaluate the disease status of other free-ranging and captive settings where there is a concern for CWD transmissions, such as at feeders and water troughs with CWD-exposed properties. This approach could have substantial implications for free-ranging cervid surveillance as well as in epidemiological investigations of CWD. 

Funded by: USDA Grant number: AP20VSSPRS00C143 

Large-scale PMCA screening of retropharyngeal lymph nodes and in white-tailed deer and comparisons with ELISA and IHC: the Texas CWD study 

Rebeca Benaventea, Paulina Sotoa, Mitch Lockwoodb, and Rodrigo Moralesa aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bTexas Park and Wildlife Department, Texas, USA 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that affects various species of cervids, and both free-ranging and captive animals. Until now, CWD has been detected in 3 continents: North America, Europe, and Asia. CWD prevalence in some states may reach 30% of total animals. In Texas, the first case of CWD was reported in a free-range mule deer in Hudspeth and now it has been detected in additional 14 counties. Currently, the gold standard techniques used for CWD screening and detection are ELISA and immunohistochemistry (IHC) of obex and retropharyngeal lymph nodes (RPLN). Unfortunately, these methods are known for having a low diagnostic sensitivity. Hence, many CWD-infected animals at pre-symptomatic stages may be misdiagnosed. Two promising in vitro prion amplification techniques, including the real-time quaking-induced conversion (RT-QuIC) and the protein misfolding cyclic amplification (PMCA) have been used to diagnose CWD and other prion diseases in several tissues and bodily fluids. Considering the low cost and speed of RT-QuIC, two recent studies have communicated the potential of this technique to diagnose CWD prions in RPLN samples. Unfortunately, the data presented in these articles suggest that identification of CWD positive samples is comparable to the currently used ELISA and IHC protocols. Similar studies using the PMCA technique have not been reported. Aims: Compare the CWD diagnostic potential of PMCA with ELISA and IHC in RPLN samples from captive and free-range white-tailed deer. Material and Methods: In this study we analyzed 1,003 RPLN from both free-ranging and captive white-tailed deer collected in Texas. Samples were interrogated with the PMCA technique for their content of CWD prions. PMCA data was compared with the results obtained through currently approved techniques. Results: Our results show a 15-fold increase in CWD detection in free-range deer compared with ELISA. Our results unveil the presence of prion infected animals in Texas counties with no previous history of CWD. In the case of captive deer, we detected a 16% more CWD positive animals when compared with IHC. Interestingly, some of these positive samples displayed differences in their electroforetic mobilities, suggesting the presence of different prion strains within the State of Texas. Conclusions: PMCA sensitivity is significantly higher than the current gold standards techniques IHC and ELISA and would be a good tool for rapid CWD screening. 

Funded by: USDA Grant number: AP20VSSPRS00C143 

Protein misfolding cyclic amplification (PMCA) as an ultra-sensitive technique for the screening of CWD prions in different sample types 

Francisca Bravo‐Risia,b, Paulina Sotoa,b, Rebeca Benaventea, Hunter Reedc, Mitch Lockwoodc, Tracy Nicholsd, and Rodrigo Moralesa,b aDepartment of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA; bCentro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile; cTexas Park and Wildlife Department, Texas, USA; dVeterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA 

Chronic wasting disease (CWD) is a prion disease that affects farmed and free-ranging cervids. The infectious agent in CWD is a misfolded form of the prion protein (PrPSc) that promotes conformational changes in the host’s cellular prion protein (PrPC). Currently, definitive CWD status is confirmed in the brain and lymphoid tissues by immunohistochemistry. The limitation of this technique is its poor sensitivity. Protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT- QuIC) are ultra-sensitive techniques that overcome these issues. PMCA mimics the self- propagation of infectious prions in vitro through multiple incubation/sonication cycles, increasing the number of prion particles present in a given sample. The detection of proteinase K (PK) -resistant PrPScby PMCA has been performed in experimental and natural samples that might harbor subclinical levels of prions. These samples include several tissues, bodily fluids, excreta, and different manmade and natural materials, including mineral licks, soils, and plants. Aims: In this study, we highlight recent advances and contributions that our group has performed in the detection of CWD prions from samples collected in farmed and free-ranging cervids, as well as other specimens involving the environment that contains CWD-infected deer. Material and Methods: A set of diverse samples analyzed in this study were collected by USDA and TPWD personnel in breeding and taxidermy facilities, and deer breeding facilities. These included animal and environmental samples. Additional samples from free-ranging animals were provided by hunters. Results: The diverse range of samples successfully detected for CWD prion infection in this study include blood, semen, feces, obex, retropharyngeal lymph node, fetuses (neural and peripheral tissues) and gestational tissues, parasites, insects, plants, compost/soil mixtures, and swabs from trash containers. Importantly, these results helped to identify seeding-competent prions in places reported to be free of CWD. The levels of prion infectivity in most of these samples are currently being investigated. Conclusions: Our findings contribute to the understanding of the transmission dynamics and prevalence of CWD. In addition, our data have helped to identify CWD in areas previously considered to be free of CWD. We also demonstrate that PMCA is a powerful technique for the screening of biological and environmental samples. Overall, our research suggests that PMCA may be a useful tool to implement for the surveillance and management of CWD. Funded by: NIH/NIAID and USDA Grant number: 1R01AI132695 (NIH) and AP20VSSPRS00C143 (USDA) 

Nasal bot: an emerging vector for natural chronic wasting disease transmission 

Paulina Sotoa,b, Francisca Bravo-Risia,b, Carlos Kramma, Nelson Pereza, Rebeca Benaventea, J. Hunter Reedc, Mitch Lockwoodc, Tracy A. Nicholsd, and Rodrigo Moralesa,b aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bUniversidad Bernardo O’Higgins, Santiago, Chile; cTexas Park and Wildlife Department, Texas, USA; dVeterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA 

Chronic wasting disease (CWD) is a fatal neurodegenerative disease that affects farmed and free-ranging cervids populations. The spread of CWD in cervids is thought to occur through the direct contact between cervids or through the exposure of naïve animals to contaminated environments. Parasites are known vectors of multiple diseases in animals. However, the potential role of parasites in CWD transmission remains unclear. Aims: The main objective of this study was to determine if CWD prions could be detected in the larvae of deer nasal bot flies, a common deer parasite, taken from CWD-infected white-tailed deer (Odocoileus virginianus). Methods: Bot fly larvae were collected from the nasal cavity of naturally infected CWD- positive or CWD non-detect white-tailed deer. The CWD seeding activity of the larvae was interrogated by PMCA. Prion infectivity was also evaluated in cervidized transgenic mouse bioassay (intra-cerebral administration in Tg1536 mice). Mice inoculated with bot larvae homogenate were sacrificed when they showed established signs of prion disease, or at extended periods after treatment (600 days). All inoculated mouse brains were evaluated for protease resistant prions to confirm clinical or sub-clinical infection. Bot larvae from CWD non-detect deer were used as controls. To further mimic environmental transmission, bot larvae homogenates were mixed with soils and plants were grown on them. Both plants and soils were tested for prion seeding activity. Results: PMCA analysis demonstrated CWD seeding activity in nasal bot larvae from captive and free-ranging white-tailed deer. CWD-contaminated bots efficiently infected transgenic mice, with attack rates and incubation periods suggesting high infectivity titers. Further analyses of treated animals (biochemical characterization of protease resistant prions and immunohistochemistry) confirmed prion infection. Analyses on dissected parts of the bot larvae demonstrate that the infectivity is concentrated in the larvae cuticle (outer part). Nasal bot larvae extracts mixed with

 soils showed seeding activity by PMCA. Interestingly, plants grown in soil contaminated with the nasal bot larvae extract were found to produce seeding activity by PMCA. Conclusion: In this study we described for the first time that deer nasal bot larvae from CWD-infected deer carry high CWD infectivity titers. We also demonstrate that CWD prions in these parasites can interact with other environmental components relevant for disease transmission. Considering this information, we propose that deer nasal bot larvae could act as vectors for CWD transmission in wild and farming settings. Funded by: NIH/NIAID and USDA/APHIS Grant number: R01AI132695 and AP20VSSPRS00C143 PRION 2022 ABSTRACTS, AND A BIG THANK YOU TO On behalf of the Prion2020/2022 Congress Organizing Committee and the NeuroPrion Association, we heartily invite you to join us for the International Conference Prion2020/2022 from 13.-16. September 2022 in Göttingen.

Prion 2022 Conference abstracts: pushing the boundaries


Shedding of Chronic Wasting Disease Prions in Multiple Excreta Throughout Disease Course in White-tailed Deer

Nathaniel D. Denkersa, Erin E. McNultya, Caitlyn N. Krafta, Amy V. Nallsa, Joseph A. Westricha, Wilfred Goldmannb, Candace K. Mathiasona, and Edward A. Hoovera

aPrion Research Center, College of Veterinary Medicine and Biological Sciences, Department of Microbiology, Immunology, and Pathology; Colorado State University, Fort Collins, CO, USA; bDivision of Infection and Immunity, The Roslin Institute and the Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, UK

Aims: Chronic wasting disease (CWD) now infects cervids in South Korea, North America, and Scandinavia. CWD is unique in its efficient transmission and shedding of prions in body fluids throughout long course infections. Questions remain as to the magnitude of shedding and the route of prion acquisition. As CWD continues to expand, the need to better understand these facets of disease becomes more pertinent. The purpose of the studies described was to define the longitudinal shedding profile of CWD prions in urine, saliva, and feces throughout the course of infection in white-tailed deer.

Material and Methods: Twelve (12) white-tailed deer were inoculated with either 1 mg or 300ng of CWD. Urine, saliva, and feces were collected every 3-month post-inoculation (MPI) throughout the study duration. Cohorts were established based on PNRP genotype: codon 96 GG (n = 6) and alternate codons 96 GS (n = 5) & 103NT (n = 1). Urine and saliva were analyzed using iron-oxide magnetic extraction (IOME) and real-time quaking induced conversion (RT-QuIC)(IQ). Feces were subjected to IOME, followed by 4 rounds protein misfolding cyclic amplification (PMCA) with products analyzed by RT-QuIC (IPQ). To determine whether IPQ may be superior to IQ, a subset of urine and saliva were also tested by IPQ. Results were compared with clinical disease status.

Results: Within the 96 GG cohort, positive seeding activity was detected in feces from all deer (100%), in saliva from 5 of 6 (83%), and in urine from 4 of 6 (66%). Shedding in all excreta occurred at, or just after, the first positive tonsil biopsy result. In the 96 GS/103NT cohort, positive seeding activity could be detected in feces from 3 of 6 (50%) deer, saliva in 2 of 6 (33%), and urine in 1 of 6 (16%). Shedding in excreta was detected >5 months after the first tonsil positive result. Four of six 96 GG deer developed clinical signs of CWD, whereas only 2 of the 96 GS/103NT did. Shedding was more frequently detected in deer with clinical disease. The IPQ protocol did not significantly improve detection in saliva or urine samples, however, it significantly augmented detection in feces by eliminating non-specific background commonly experienced with IQ. Negative control samples remained negative in samples tested.

Conclusions: These studies demonstrate: (a) CWD prion excretion occurs throughout infection; (2) PRNP genotype (GG≫GS/NT) influences the excreta shedding; and (3) detection sensitivity in excreta can vary with different RT-QuIC protocols. These results provide a more complete perspective of prion shedding in deer during the course of CWD infection.

Funded by: National Institutes of Health (NIH)

Grant number: RO1-NS061902-09 R to EAH, PO1-AI077774 to EAH, and R01-AI112956-06 to CKM

Acknowledgement: We abundantly thank Sallie Dahmes at WASCO and David Osborn and Gino D’Angelo at the University of Georgia Warnell School of Forestry and Natural Resources for their long-standing support of this work through provision of the hand-raised, CWD-free, white-tailed deer used in these studies

Carrot plants as potential vectors for CWD transmission

Paulina Sotoa,b, Francisca Bravo-Risia,b, Claudio Sotoa, and Rodrigo Moralesa,b

aDepartment of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA; bUniversidad Bernardo O’Higgins, Santiago, Chile

Prion diseases are infectious neurodegenerative disorders afflicting humans and other mammals. These diseases are generated by the misfolding of the cellular prion protein into a disease-causing isoform. Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids (captive and free-range). CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environments. Many studies have shown that infectious prions can enter the environment through saliva, feces, or urine from infected animals and decaying carcasses. However, we do not fully understand the specific contribution of each component to disease transmission events. Plants are logical environmental components to be evaluated since they grow in environments contaminated with CWD prions and are relevant for animal and human nutrition.

Aims: The main objective of this study is to study whether prions are transported to the roots and leaves of carrots, an edible plant commonly used in the human diet and as deer bait.

Methods: We have grown carrot plants in CWD-infected soils. After 90 days, we harvested the carrots and separated them from the leaves. The experiment was controlled by growing plants in soil samples treated with brain extracts from healthy animals. These materials were interrogated for their prion seeding activity using the Protein Misfolding Cyclic Amplification (PMCA) technique. Infectivity was evaluated in mouse bioassays (intracerebral injections in Tg1536 mice). The animals were sacrificed when they showed established signs of prion disease. Animals not displaying clinical signs were sacrificed at 600 days post-inoculation.

Results: The PMCA analysis demonstrated CWD seeding activity in soils contaminated with CWD prions, as well as in carrot plants (leaves and roots) grown on them. Bioassays demonstrated that both leaves and roots contained CWD prions in sufficient quantities to induce disease (92% attack rate). As expected, animals treated with prion-infected soils developed prion disease at shorter incubation periods (and complete attack rates) compared to plant components. Animals treated with soil and plant components exposed with CWD-free brain extracts did not display prion-associated clinical signs or evidence of sub-clinical prion infection.

Conclusions: We show that edible plant components can absorb prions from CWD contaminated soils and transport them to their aerial parts. Our results indicate that plants could participate as vectors of CWD transmission. Importantly, plants designated for human consumption represent a risk of introducing CWD prions into the human food chain.

Funded by: NIH

Grant number: R01AI132695



Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD


Thursday, October 28, 2021 
Chronic Wasting Disease (CWD) TSE Prion Zoonosis, friendly fire, iatrogenic transmission, blood products, sporadic CJD, what if?
Title: Exploring the possibility of CWD transmission through artificial insemination of semen from CWD positive bucks

Author

Submitted to: North American Deer Farmer
Publication Type: Trade Journal
Publication Acceptance Date: 7/1/2022
Publication Date: 7/20/2022
Citation: Cassmann, E.D., Greenlee, J.J. 2022. Exploring the possibility of CWD transmission through artificial insemination of semen from CWD positive bucks. North American Deer Farmer. p. 107-109.
Interpretive Summary:
Technical Abstract: Artificial insemination is a popular method for herd management and reproduction in the cervid farming industry. There are numerous benefits including increased access to superior genetics, convenience, and increased farm revenue. In this article, we summarize the research that is underway to determine if semen from a CWD infected buck can transmit the disease. Some research has already been performed on the reproductive transmission of CWD in cervids. Scientists from Colorado State University used Muntjac deer to demonstrate that CWD positive does could transmit CWD to their fawns (1). In the study, Muntjac does were bred to CWD negative bucks. At the time of breeding, does were either in the early or late stage of CWD infection. Fawns from both doe groups were positive for CWD. More recent laboratory experiments on semen from CWD positive bucks have demonstrated the presence of CWD prions (2). Researchers used an amplification technique called PMCA (protein misfolding cyclic amplification). The technique amplifies low levels of CWD prions to a point where conventional antibody methods can detect them. The caveat to the discovery of CWD prions in semen is that we’re unsure if the amount of CWD prions in semen is biologically relevant. In other words, is the level of CWD prions in semen sufficient to be infectious and cause disease in deer? In our present study, we are trying to answer that question. We obtained semen from a CWD positive buck. The semen was confirmed to be PMCA positive. For the study, we used the transcervical insemination method in three does. As of June 19th, a single fawn was born. Shortly after birth the fawn was separated to prevent environment CWD exposure. We are assessing both the does and the fawn for the development of CWD. The experiment is expected to last several years, and periodic sampling will help monitor progress. A second phase of the study will investigate the absolute susceptibility of white-tailed deer does to CWD after transcervical and/or vaginal exposure to large amounts of CWD prions. We plan to expose two does to brain suspension from a CWD positive deer. These does will also be monitored long term for the development of disease. If these does remain negative, it would indicate that CWD transmission to the dam is highly unlikely via reproductive tract exposure.
TUESDAY, DECEMBER 31, 2019 
In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus 
TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if? 
SUNDAY, FEBRUARY 16, 2020 
***> Jerking for Dollars, Are Texas Politicians and Legislators Masturbating Deer For Money, and likely spreading CWD TSE Prion? 
THURSDAY, JULY 10, 2014 supercalifragilisticexpialidocious or 
superovulationcwdtsepriondocious ? 
(It was noted with concern that hormone extracts could be manufactured by a 
veterinary surgeon for administration to animals under his care without any 
Medicines Act Control.) PITUITARY EXTRACT This was used to help cows 
super ovulate. 
*** This tissue was considered to be of greatest risk of containing BSE 
and consequently transmitting the disease. *** 




Proposed Amendments to CWD Zone Rules
Your opinions and comments have been submitted successfully.
Thank you for participating in the TPWD regulatory process.


THURSDAY, AUGUST 04, 2022 

Texas Proposed Amendments to CWD Zone Rules Singeltary Submission


Control of Chronic Wasting Disease OMB Control Number: 0579-0189 APHIS-2021-0004 Singeltary Submission



Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification



TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION MAD COW TYPE DISEASE

THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


ENVIRONMENT FACTORS FOR THE TRANSMISSION OF CWD TSE PRP

Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces

Environment International

Available online 13 June 2022, 107347

Environment International

Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces

Qi Yuana Gag e Rowdenb Tiffany M.Wolfc Marc D.Schwabenlanderb Peter A.LarsenbShannon L.Bartelt-Huntd Jason C.Bartza

a Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178, United States of America

b Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, United States of America

c Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, United States of America

d Department of Civil and Environmental Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, 68182, United States of America

Received 26 April 2022, Revised 8 June 2022, Accepted 9 June 2022, Available online 13 June 2022.


Highlights • An innovative method for prion recovery from swabs was developed.

• Recovery of prions decreased as swab-drying time was increased.

• Recovery of CWD prions from stainless steel and glass was approximately 30%.

• RT-QuIC enhanced CWD prion detection by 4 orders of magnitude.

• Surface-recovered CWD prion was sufficient for efficient RT-QuIC detection. 

Abstract

Chronic wasting disease (CWD) has been identified in 30 states in the United States, four provinces in Canada, and recently emerged in Scandinavia. The association of CWD prions with environmental materials such as soil, plants, and surfaces may enhance the persistence of CWD prion infectivity in the environment exacerbating disease transmission. Identifying and quantifying CWD prions in the environment is significant for prion monitoring and disease transmission control. A systematic method for CWD prion quantification from associated environmental materials, however, does not exist. In this study, we developed an innovative method for extracting prions from swabs and recovering CWD prions swabbed from different types of surfaces including glass, stainless steel, and wood. We found that samples dried on swabs were unfavorable for prion extraction, with the greatest prion recovery from wet swabs. Using this swabbing technique, the recovery of CWD prions dried to glass or stainless steel was approximately 30% in most cases, whereas that from wood was undetectable by conventional prion immunodetection techniques. Real-time quake-induced conversion (RT-QuIC) analysis of these same samples resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this method was similar to the original CWD prion load applied to the surface. This combined surface swabbing and RT-QuIC detection method provides an ultrasensitive means for prion detection across many settings and applications.

snip...

5. Conclusions

Chronic wasting disease is spreading in North America and it is hypothesized that in CWD-endemic areas environmental persistence of CWD prions can exacerbate disease transmission. The development of a sensitive CWD prion detection method from environmentally relevant surfaces is significant for monitoring, risk assessment, and control of CWD. In this study, we developed a novel swab-extraction procedure for field deployable sampling of CWD prions from stainless steel, glass, and wood. We found that extended swab-drying was unfavorable for extraction, indicating that hydrated storage of swabs after sampling aided in prion recovery. Recoverable CWD prions from stainless steel and glass was approximately 30%, which was greater than from wood. RT-QuIC analysis of the swab extracts resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude compared to conventional immunodetection techniques. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this developed method was similar to the original CWD prion load without surface contact. This method of prion sampling and recovery, in combination with ultrasensitive detection methods, allows for prion detection from contaminated environmental surfaces.


Research Paper

Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer

Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzie 
ORCID Icon show less

Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022

Download citation


ABSTRACT

Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.

KEYWORDS: Prion chronic wasting diseasesex differences species differences disease prevalence cervid protein expression glands



Paper

Rapid recontamination of a farm building occurs after attempted prion removal

Kevin Christopher Gough BSc (Hons), PhD Claire Alison Baker BSc (Hons) Steve Hawkins MIBiol Hugh Simmons BVSc, MRCVS, MBA, MA Timm Konold DrMedVet, PhD, MRCVS … See all authors 

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

 The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.


***>This is very likely to have parallels with control efforts for CWD in cervids.

***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free

Gudmundur Georgsson1, Sigurdur Sigurdarson2, Paul Brown3


Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

imageTimm Konold1*, imageStephen A. C. Hawkins2, imageLisa C. Thurston3, imageBen C. Maddison4, imageKevin C. Gough5, imageAnthony Duarte1 and imageHugh A. Simmons1

The findings of this study highlight the role of field furniture used by scrapie-infected sheep to act as a reservoir for disease re-introduction although infectivity declines considerably if the field furniture has not been in contact with scrapie-infected sheep for several months. PMCA may not be as sensitive as VRQ/VRQ sheep to test for environmental contamination.

snip...

Discussion 

snip...

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 


***> 172. Establishment of PrPCWD extraction and detection methods in the farm soil

Kyung Je Park, Hoo Chang Park, In Soon Roh, Hyo Jin Kim, Hae-Eun Kang and Hyun Joo Sohn

Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Korea

Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


MONDAY, APRIL 19, 2021

Evaluation of the application for new alternative biodiesel production process for rendered fat including Category 1 animal by-products (BDI-RepCat® process, AT) ???


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


THURSDAY, FEBRUARY 28, 2019 

BSE infectivity survives burial for five years with only limited spread


5 or 6 years quarantine is NOT LONG ENOUGH FOR CWD TSE PRION !!!

QUARANTINE NEEDS TO BE 21 YEARS FOR CWD TSE PRION !

FRIDAY, APRIL 30, 2021 

Should Property Evaluations Contain Scrapie, CWD, TSE PRION Environmental Contamination of the land?

***> Confidential!!!!

***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!

---end personal email---end...tss

and so it seems...

Scrapie Agent (Strain 263K) Can Transmit Disease via the Oral Route after Persistence in Soil over Years

Published: May 9, 2007

snip...

Our results showed that 263K scrapie agent can persist in soil at least over 29 months. Strikingly, not only the contaminated soil itself retained high levels of infectivity, as evidenced by oral administration to Syrian hamsters, but also feeding of aqueous soil extracts was able to induce disease in the reporter animals. We could also demonstrate that PrPSc in soil, extracted after 21 months, provides a catalytically active seed in the protein misfolding cyclic amplification (PMCA) reaction. PMCA opens therefore a perspective for considerably improving the detectability of prions in soil samples from the field.

snip...


Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document



Heading Off a Wildlife Epidemic

Charles E. Gilliland (Aug 18, 2021)

The Takeaway

Landowners in certain parts of the state need to be aware of chronic wasting disease, which can greatly reduce the number of deer. While there are no known cures or ways to eradicate the disease, the Texas Parks and Wildlife Department is taking measures to reduce its spread.

A multitude of risks threaten to undermine Texas landowners' efforts to manage their land. Some of those spring from past activities but can leave invisible living legacies behind. Anthrax, for example. An outbreak of anthrax in livestock leaves a scattering of spores across the countryside that can activate and infect replacement herds.

Chronic wasting disease (CWD) in wildlife poses a similar potential problem for landowners in certain parts of Texas. CWD infects members of the Cervidae family, namely deer, elk, moose, etc. CWD does not pose dangers to livestock, and scientists have not found evidence of the disease infecting humans. However, it is always fatal to stricken wildlife, threatening a destructive wave of infections among deer herds where the disease has spread. Therefore, CWD poses a direct threat to one of the primary motives for owning rural land: wildlife herd management.

Profiling CWD

CWD belongs to a family of disorders known as prion diseases, or transmissible spongiform encephalopathies (TSEs). It includes Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, or mad cow disease, in cattle. The Centers for Disease Control and Prevention describes these maladies in detail:

The causative agents of TSEs are believed to be prions. The term “prions" refers to abnormal, pathogenic agents that are transmissible and are able to induce abnormal folding of specific normal cellular proteins called prion proteins that are found most abundantly in the brain. The functions of these normal prion proteins are still not completely understood. The abnormal folding of the prion proteins leads to brain damage and the characteristic signs and symptoms of the disease. Prion diseases are usually rapidly progressive and always fatal.

CWD symptoms include dramatic weight loss, stumbling, listlessness, decreased social interaction, loss of fear of humans, and excessive salivating. However, animals typically exhibit no symptoms until 18-24 months after contracting the disease. In addition, these symptoms could be caused by other conditions, so formal testing is needed to reliably diagnose CWD.

Obviously, an infected animal may spread the disease to other members of the herd during the nonsymptomatic phase of infection. Perhaps even worse, the body casts off prions, so an infected animal will cast off diseased prions. Therefore, an infected herd can leave infection in the soil and remain infectious to host animals, much like anthrax. 

CWD Comes to Texas

Scientists first identified CWD in mule deer in Colorado in 1967. Since that time, CWD has spread to Wyoming, Montana, Wisconsin, Pennsylvania, and other states.

CWD first appeared in Hudspeth County in 2012 in free-ranging mule deer. In 2015, the Texas Parks and Wildlife Department (TPWD) found CWD in white-tailed deer in captive facilities in Medina County. By 2021, a total of 224 cases had been identified in 13 counties. Tests confirmed cases in two red deer, four elk, 49 mule deer, and 169 white-tailed deer.

See the TPWD site for details. Texas A&M AgriLife Extension provides a good overview of the disease in A Guide to Chronic Wasting Disease (CWD) in Texas Cervids.

Containing the Spread

Currently, there is no known cure for the disease nor any mechanism to eradicate it. Therefore, TPWD management of CWD seeks to contain the spread to areas of confirmed infections.

The plan has established five CWD zones with confirmed infections: Kimble County Zone, Trans-Pecos Zone, South Central Zone, Panhandle Zone, and Val Verde County Zone. The latest edition of the TPWD Outdoor Annual provides maps of each zone indicating official stations performing testing for CWD. All hunters harvesting animals in these zones must take them to one of these stations to have them tested for CWD within 48 hours of the harvest. In addition, hunters can transport carcasses out of the zones only after all brain and spinal cord tissue have been removed. TPWD will provide a receipt for the sample.

Because the spread of CWD is evolving, regulations can change quickly. Therefore, anyone involved in hunting activity should consult the most recent Outdoor Annual for the latest regulations. To reduce the chances of spreading the disease, TPWD regulations also restrict the movement of live deer from CWD zones.

Impact on Rural Landowners

CWD poses a significant threat to the future of hunting in Texas. Deer population declines of 45 and 50 percent have been documented in Colorado and Wyoming. A broad infection of Texas deer populations resulting in similar population impacts would inflict severe economic damage to rural communities and could negatively impact land markets. Specifically, those landowners seeking to establish a thriving herd of deer could avoid buying in areas with confirmed CWD infections.

As they do with anthrax-susceptible properties, land brokers may find it advisable to inquire about the status of CWD infections on properties that they present for sale. Prospective buyers should also investigate the status of the wildlife on prospective properties. In addition, existing landowners should monitor developments as TPWD crafts management strategies to identify and contain this deadly disease. 

Dr. Gilliland (c-gilliland@tamu.edu) is a research economist with the Texas Real Estate Research Center at Texas A&M University.


Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces

Environment International

Available online 13 June 2022, 107347

Environment International

Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces

Qi Yuana Gag e Rowdenb Tiffany M.Wolfc Marc D.Schwabenlanderb Peter A.LarsenbShannon L.Bartelt-Huntd Jason C.Bartza

a Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178, United States of America

b Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, United States of America

c Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, United States of America

d Department of Civil and Environmental Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska, 68182, United States of America

Received 26 April 2022, Revised 8 June 2022, Accepted 9 June 2022, Available online 13 June 2022.


Get rights and content

Under a Creative Commons license Open access

Highlights • An innovative method for prion recovery from swabs was developed.

• Recovery of prions decreased as swab-drying time was increased.

• Recovery of CWD prions from stainless steel and glass was approximately 30%.

• RT-QuIC enhanced CWD prion detection by 4 orders of magnitude.

• Surface-recovered CWD prion was sufficient for efficient RT-QuIC detection. 

Abstract

Chronic wasting disease (CWD) has been identified in 30 states in the United States, four provinces in Canada, and recently emerged in Scandinavia. The association of CWD prions with environmental materials such as soil, plants, and surfaces may enhance the persistence of CWD prion infectivity in the environment exacerbating disease transmission. Identifying and quantifying CWD prions in the environment is significant for prion monitoring and disease transmission control. A systematic method for CWD prion quantification from associated environmental materials, however, does not exist. In this study, we developed an innovative method for extracting prions from swabs and recovering CWD prions swabbed from different types of surfaces including glass, stainless steel, and wood. We found that samples dried on swabs were unfavorable for prion extraction, with the greatest prion recovery from wet swabs. Using this swabbing technique, the recovery of CWD prions dried to glass or stainless steel was approximately 30% in most cases, whereas that from wood was undetectable by conventional prion immunodetection techniques. Real-time quake-induced conversion (RT-QuIC) analysis of these same samples resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this method was similar to the original CWD prion load applied to the surface. This combined surface swabbing and RT-QuIC detection method provides an ultrasensitive means for prion detection across many settings and applications.

snip...

5. Conclusions

Chronic wasting disease is spreading in North America and it is hypothesized that in CWD-endemic areas environmental persistence of CWD prions can exacerbate disease transmission. The development of a sensitive CWD prion detection method from environmentally relevant surfaces is significant for monitoring, risk assessment, and control of CWD. In this study, we developed a novel swab-extraction procedure for field deployable sampling of CWD prions from stainless steel, glass, and wood. We found that extended swab-drying was unfavorable for extraction, indicating that hydrated storage of swabs after sampling aided in prion recovery. Recoverable CWD prions from stainless steel and glass was approximately 30%, which was greater than from wood. RT-QuIC analysis of the swab extracts resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude compared to conventional immunodetection techniques. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this developed method was similar to the original CWD prion load without surface contact. This method of prion sampling and recovery, in combination with ultrasensitive detection methods, allows for prion detection from contaminated environmental surfaces.


Research Paper

Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer

Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzie 
ORCID Icon show less

Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022

Download citation


ABSTRACT

Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.

KEYWORDS: Prion chronic wasting diseasesex differences species differences disease prevalence cervid protein expression glands


FRIDAY, NOVEMBER 04, 2022

Texas CWD TSE Prion 409 Cases Confirmed To Date TPWD emergency rule adds two new surveillance zones located primarily in Gillespie and Limestone counties

SUNDAY, MAY 08, 2022 

USA National Prion Disease Pathology Surveillance Center Surveillance Update April 11th, 2022

https://creutzfeldt-jakob-disease.blogspot.com/2022/05/usa-national-prion-disease-pathology.html
TUESDAY, MAY 24, 2022 

Texas Creutzfeldt Jakob Disease CJD TSE Prion Update Singeltary FOIA Request Received May 23, 2022

https://cjdtexas.blogspot.com/2022/05/texas-creutzfeldt-jakob-disease-cjd-tse.html
TUESDAY, MAY 10, 2022 

Concordance of CSF RT-QuIC across the European Creutzfeldt-Jakob Disease surveillance network

https://creutzfeldt-jakob-disease.blogspot.com/2022/05/concordance-of-csf-rt-quic-across.html
TUESDAY, OCTOBER 18, 2022 

Assessing the Potential Transmissibility of Bovine and Cervid Prions with a Human Prion Protein-based Model ARS RESEARCH 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: 

In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.. 

Terry S. Singeltary, Sr Bacliff, Tex 

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 
http://jama.jamanetwork.com/article.aspx?articleid=1031186
Elsevier Editorial System(tm) for The Lancet Infectious Diseases

Manuscript Draft

Manuscript Number:

Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory

Article Type: Personal View

Corresponding Author: Mr. Terry S. Singeltary,

Corresponding Author's Institution: na

First Author: Terry S Singeltary, none

Order of Authors: Terry S Singeltary, none; Terry S. Singeltary

Abstract: TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.

HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory August 2007

August 2007

HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory

TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007. With all the science to date refuting it, to continue to validate this myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, surgical, blood, medical, cosmetics etc. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

This would further have to be broken down to strain of species and then the route of transmission would further have to be broken down. Accumulation and Transmission are key to the threshold from sub-clinical to clinical disease, and key to all this, is to stop the amplification and transmission of this agent, the spreading of, no matter what strain. In my opinion, to continue with this myth that the U.K. strain of BSE (one strain TSE in cows), and the nv/v CJD (one strain TSE humans) and that all the rest of human TSE are just one single strain i.e. sporadic CJD (when to date there are 6 different phenotypes of sCJD, and growing per Gambetti et al), and that no other animal TSE transmits to humans, to continue with this masquerade will only continue to spread, expose, and kill, who knows how many more in the years and decades to come. ONE was enough for me, My Mom, hvCJD i.e. Heidenhain Variant CJD, DOD 12/14/97 confirmed, which is nothing more than another mans name added to CJD, like CJD itself, Jakob and Creutzfeldt, or Gerstmann-Straussler-Scheinker syndrome, just another CJD or human TSE, named after another human.

WE are only kidding ourselves with the current diagnostic criteria for human and animal TSE, especially differentiating between the nvCJD vs the sporadic CJD strains and then the GSS strains and also the FFI fatal familial insomnia strains or the ones that mimics one or the other of those TSE? Tissue infectivity and strain typing of the many variants

Manuscript

of the human and animal TSEs are paramount in all variants of all TSE. There must be a proper classification that will differentiate between all these human TSE in order to do this. With the CDI and other more sensitive testing coming about, I only hope that my proposal will some day be taken seriously. ...

Terry S. Singeltary Sr. P.O. Box Bacliff, Texas USA 77518 flounder9@verizon.net





Terry S. Singeltary Sr.

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home