SCRAPIE USA

Transmissible Spongiform Encephalopathy TSE Prion PrP sheep and goats

My Photo
Name:
Location: BACLIFF, Texas, United States

My mother was murdered by what I call corporate and political homicide i.e. FOR PROFIT! she died from a rare phenotype of CJD i.e. the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. sporadic, simply meaning from unknown route and source. I have simply been trying to validate her death DOD 12/14/97 with the truth. There is a route, and there is a source. There are many here in the USA. WE must make CJD and all human TSE, of all age groups 'reportable' Nationally and Internationally, with a written CJD questionnaire asking real questions pertaining to route and source of this agent. Friendly fire has the potential to play a huge role in the continued transmission of this agent via the medical, dental, and surgical arena. We must not flounder any longer. ...TSS

Wednesday, January 28, 2009

TAFS1 Position Paper on BSE in small ruminants (January 2009)

UPDATED: TAFS POSITION PAPER ON BSE IN SMALL RUMINANTS (January 2009) TAFS Position Paper - BSE in Small Ruminants- (246 kB) ??????? BSE ???? TAFS ????????? (Japanese version not updated; status May 2007)

TAFS INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation

(January 2009)

TAFS1 Position Paper on BSE in small ruminants

The recognition in 2004 that a French goat killed in 2002(25) was infected with BSE raised the profile of prion diseases in small ruminants in Europe, especially with respect to the risk that this may represent to consumers. Research into BSE in small ruminants, using experimental infections of sheep with BSE, were expanded and will inevitably add to our understanding of how BSE behaves in sheep and goats if infected. Meanwhile surveillance for prion diseases in small ruminants in Europe has identified scrapie cases in most countries, sometimes only in small numbers, but the evolving process of data analysis and scientific investigation is challenging past assumptions about the recognition and behaviour of prion infections of small ruminants. In particular, there is an intensification of the search for BSE amongst positive cases detected by surveillance, making use of newer discriminatory tools. This paper summarises recent results, both published or soon to be published, and their implications to both consumers and authorities who are responsible for ensuring the protection of consumers.

please see full text 17 pages ;



http://www.tafsforum.org/position_papers/TAFS%20POSITION%20STATEMENT%20ON%20BSE%20IN%20SMALL%20RUMINANTS_2009.pdf



-------------------- mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000205/!x-usc:mailto:BSE-L@LISTS.AEGEE.ORG --------------------

When Atypical Scrapie cross species barriers

Authors

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

Content

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.



http://www.neuroprion.org/resources/pdf_docs/conferences/prion2008/abstract-book-prion2008.pdf



SCRAPIE USA

INFECTED AND SOURCE FLOCKS

There were 20 scrapie infected and source flocks with open statuses (Figure 3) as of April, 30, 2008. Twenty eight new infected and source flocks have been designated in FY 2008 (Figure 4); three source flocks were reported in April. ...snip

POSITIVE SCRAPIE CASES

As of April 30, 2008, 122 new scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL) in FY 2008 (Figure 6). Of these, 103 were field cases and 19* were Regulatory Scrapie Slaughter Surveillance (RSSS) cases (collected in FY 2008 and reported by May 20, 2008). Positive cases reported for April 2008 are depicted in Figure 7. Eighteen cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002 (Figure 8). The most recent positive goat case was confirmed in February 2008 and originated from the same herd in Michigan as the other FY 2008 goat cases. ...snip

CAPRINE SCRAPIE PREVALENCE STUDY (CSPS)

snip...

However, four positive goats have been identified this fiscal year through field investigations. One was a clinical suspect submitted for testing and the other three originated from the birth herd of the clinical case.

ANIMALS SAMPLED FOR SCRAPIE TESTING

As of April 30, 2008, 26,703 animals have been sampled for scrapie testing: 23,378 RSSS, 1,517 goats for the CSPS study, 1,466 regulatory field cases, 270 regulatory third eyelid biopsies, and 72 regulatory rectal biopsies (chart 8).

TESTING OF LYMPHOID TISSUE OBTAINED BY RECTAL BIOPSY WAS APPROVED BY USDA AS AN OFFICIAL LIVE-ANIMAL TEST ON JANUARY 11, 2008. ...

PLEASE NOTE, (FIGURE 6), Scrapie Confirmed Cases in FY 2008 MAP, PA 3, 1**, Two cases-state of ID UNKNOWN, 1 case Nor98-like**



http://www.aphis.usda.gov/animal_health/animal_diseases/scrapie/downloads/monthly_scrapie_rpt.pps



http://scrapie-usa.blogspot.com/



P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.



http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf



Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

Edited by Stanley B. Prusiner, University of California, San Francisco, CA, and approved September 12, 2005 (received for review March 21, 2005)



http://www.pnas.org/cgi/content/abstract/0502296102v1



NOR-98 ATYPICAL SCRAPIE 5 cases documented in USA in 5 different states USA 007



http://nor-98.blogspot.com/2008/04/seac-spongiform-encephalopathy-advisory.html



Tuesday, June 3, 2008 SCRAPIE USA UPDATE JUNE 2008 NOR-98 REPORTED PA



http://nor-98.blogspot.com/2008/06/scrapie-usa-update-june-2008-nor-98.html



http://nor-98.blogspot.com/



Monday, December 1, 2008 When Atypical Scrapie cross species barriers



http://nor-98.blogspot.com/2008/12/when-atypical-scrapie-cross-species.html




Saturday, January 24, 2009 Research Project: Detection of TSE Agents in Livestock, Wildlife, Agricultural Products, and the Environment Location: 2008 Annual Report



http://bse-atypical.blogspot.com/2009/01/research-project-detection-of-tse.html




TSS

Labels: , , ,

TAFS1 STATEMENT ON TRANSMISSION OF SCRAPIE VIA MILK (January, 2009)

TAFS INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation

(January, 2009)

TAFS1 STATEMENT ON TRANSMISSION OF SCRAPIE VIA MILK

Introduction In April 2008, TAFS published a statement on the transmission of scrapie via milk, prompted by the publication of results that provided strong evidence of transmission of scrapie to lambs by the feeding of milk from scrapie-infected ewes(4). More recently, another publication has further clarified the mechanisms of transmission(5), and together the results have enabled a review of the implications by the European Food Safety Authority(3), and prompted initial regulatory action by the European Commission. This statement represents a revision of the TAFS statement to take into account the recent data and interpretation.

TAFS welcomes publication of these findings. They contribute to the understanding of the mechanisms of transmission of scrapie as a prion disease of sheep and goats that has been known for over 200 years. Scrapie is not a highly contagious disease. It does not spread easily, but it is difficult to eradicate. It is known to spread between sheep, both from ewe to lamb and to other unrelated sheep and goats. The exact route of transmission has not been determined so far. There are several possible routes, which include contact with placenta of infected ewes, or possibly before birth while the lamb is still in the womb. Transmission via milk and/or uterine fluids after birth are additional possibilities. Ewe to lamb transmission(4) This study attempted to assess the scope for transmission, under a worst-case scenario, by collecting milk from sheep of highly susceptible genetic makeup (high risk group), at a time when they were either about to die of scrapie, or when the first clinical signs were seen. Their milk was collected and fed to lambs that were born to uninfected mothers and kept in isolation while they received the milk. These lambs were also of the most susceptible genotype (VRQ/VRQ).

The lambs have been shown to be infected by the testing of tissue samples collected either while still alive, by biopsy, or from some that had died of other diseases. None have yet reached the point of clinical disease themselves, and infectivity itself has not been demonstrated. Tests have revealed the

1 TAFS is an international platform created by a group of scientists, food industry experts, animal health regulators, epidemiologists, diagnosticians, food producers, and consumers. Its purpose is to establish and maintain lines of communication for the dissemination of reliable information to the public that can maintain confidence in the safety of food with regard to Transmissible Animal Diseases.

TAFS

2

presence of abnormal prion protein (PrPSc) that is normally recognised as a marker for the presence of infectivity. The success of the study was dependent on having scrapie-free lambs to receive the milk. Despite having fully susceptible ewes and susceptible lambs, the ease with which the lambs were infected is a surprise. The experimental design anticipated transmission to smaller numbers of lambs. For this reason lambs received both milk and colostrum (the milk produced within the first 24-48 hours after lambing) from the same ewe in order to maximise the likelihood of transmission. As a result, the authors could not conclude whether transmission occurred via colostrum, milk or both. The study will therefore now be repeated, feeding lambs with either colostrum or milk. This is important for several reasons.

* Firstly, colostrum would not be used for human consumption.

* Secondly, colostrum is rich in protein and antibodies that help to protect the lamb in the early days of life before its own immune system is fully developed. For that reason farmers sometimes collect and freeze colostrum to feed to other lambs, sometimes pooling it to feed to several lambs. This practice could increase the potential for infection of lambs at their most vulnerable time of life.

Although the study described below confirms the presence of infectivity in colostrum, it is necessary to establish the status of colostrum from sheep that are unaffected by other pathogens. In other words, the result should be dependent solely on the presence of scrapie in an otherwise healthy sheep. Ewe to mouse transmission(5) This study also made use of a naturally infected experimental flock of sheep in France, but differed from the previous study in that the flock was infected with both scrapie and Maedi-Visna (MV). MV is a viral disease, that has previously been shown to potentially predispose to the transmission of scrapie via milk(6). It causes a form of mastitis (lympho-proliferative chronic mastitis) that particularly involves the formation of discrete ectopic lymphoid follicles in the mammary tissue. These have previously been shown to stain heavily for abnormal prion protein(9) in scrapie infected sheep(6). In the French study, the researchers compensated for some of the difficulties normally presented by mouse inoculation studies, of not being able to inoculate sufficient material into a mouse to guarantee transmission, by concentrating their starting material (colostrum and milk). In addition, they used highly sensitive mice (Tg338)(7), that were genetically modified to produce sheep prion protein of the VRQ genotype(10). The study was supported by post-mortem examination of many sheep for the presence of abnormal PrP in the udder, and for the presence or absence of mastitis. Although the biological assay study has not been completed, it has reached a point where it is possible to conclude conclusively that particular fractions of milk are infectious. Preliminary findings include:

* Abnormal PrP was only detected in ewes that harboured ectopic lymphoid follicles, and correlated with the detection of abnormal PrP in other peripheral lymph nodes. This therefore limited the positivity to sheep with the most susceptible genotypes that are predisposed to peripheral infection (VRQ/VRQ; VRQ/ARQ; ARQ/ARQ).

* In addition, abnormal PrP was detected in lacteal ducts and mammary acini suggesting a high probability that it would be excreted in milk/colostrum.

* Nevertheless, infectivity studies detected scrapie infectivity in both colostrum (collected within 12 hours of lambing) and milk (collected 20 days after lambing). The infectivity was associated with cellular, cream and casein-whey fractions.

TAFS

3

* Most critically, infectivity was even detected in fractions derived from sheep in which there was no visible clinical or pathological evidence of mastitic lesions.

* In all samples, preliminary estimations suggest that infectivity levels are very low, but potentially higher in mastitic milk or colostrum than from healthy udders.

EFSA BioHazards Panel Opinion(3) The findings summarised above were supported by EFSA, but the BioHazards panel stressed that in both studies conditions had been maximised to facilitate detection of infectivity. In other words, they were worst-case scenarios, and may not be fully representative of natural infection in farm animals. Nevertheless, the conclusion, that both animals and humans were clearly at risk of exposure to scrapie infectivity via milk could not be ignored. Scrapie prevalence varies between countries, but is so low as to represent only a small risk to consumers from national populations of small ruminants. The risk relating to flocks/herds in which scrapie has been diagnosed was, however, greater and possibly warranted specific action to limit exposure risks. This is important as past assumptions that risk management measures could be limited to the exclusion of mastitic milk from the human food chain have been demonstrated to be untenable, given the findings in the French study of infectivity in milk from sheep with apparently healthy udders. EFSA stressed that it’s assessment of human health risk had not changed from its previous positions in 2007 and 2008(1,2). As suggested by the French researchers, a combination of low infectivity levels in milk, and low prevalence of scrapie, coupled with the historical absence of a definite link between scrapie and human disease, suggested that milk from the general population of small ruminants could be considered low risk. The BioHazards Panel could not offer specific advice with respect to risk from milk of sheep infected with BSE or atypical scrapie(8,10), but anticipated that the recognised peripheral distribution of infectivity in some small ruminants infected with BSE could lead to the presence of infectivity in milk. Atypical scrapie has not yet been identified in peripheral tissues of infected animals. Risk Management Options Further to the EFSA and AFSSA Opinions, the EU agreed to new controls on 26 November 2008 (SANCO/3660/2008), but will be applied when legislative changes are in force. These recognise the potential role of milk in spreading classical scrapie (or BSE) between small ruminants, and are primarily intended to protect animal health. Consequently:-

* While investigations into a case of suspect TSE in a sheep or goat continue, the use of milk and milk products derived from the animals in the flock/herd in question will be restricted to that holding until confirmatory results are available.

* After confirmation that the diagnosis is of classical scrapie, milk and milk products from the flock cannot be sold for feeding to ruminant species. Sale for feeding to non-ruminants will be confined to use within the borders of the Member State concerned. These measures apply until all susceptible animals have been culled.

* A derogation allowing the deferring of culling for up to 5 years in specific circumstances has been reduced to 18 months in dairy herds/flocks. ? Imports of milk and milk products into Member States, intended for feeding to ruminants, will need to be subject to additional certification relating to the scrapie status of the flock/herd of origin. These represent only a part of the raft of regulatory actions that apply to classical scrapie affected flocks or herds in Europe. The culling of genetically susceptible sheep or all sheep or goats in the flock/herd, and voluntary programmes of breeding for resistance in sheep are also involved. If BSE cannot be excluded, the flock or the herd must be culled and any milk or milk products on the holding destroyed. The new measures do highlight however that the focus of attention is on the

TAFS

4

protection of animal health, by reducing opportunities for the spread of infection. Realistically, it is probable that the effect of the measures will vary significantly from country to county, depending on the prevalence of scrapie, the number of small ruminant dairy herds/flocks and the extent to which milk from sheep and goats is sold for animal feed. In many countries small ruminant milk production is only a minor component of industry objectives. TAF Position Scrapie is not recognised as a risk to humans, although this cannot be ruled out with certainty .The risk to humans from scrapie, and the scientific uncertainties that underpin any statement on risk, have been discussed at length in the EFSA Opinions cited below. Since there is no established evidence to date that scrapie poses a risk to human health, the finding that infectivity is present in milk of scrapie-infected animals does not give any reason to change our view that ovine and caprine milk are safe for human consumption. These results do not at the moment have any direct implications with respect to the risk from BSE in milk from cattle. Although an equivalent study has not been conducted in cattle, other studies attempting to find infectivity in bovine milk have not succeeded. Proving the total absence of infectivity is extremely difficult. The evidence for the absence of natural spread of BSE between cattle, from cow to calf or between unrelated cattle does however suggest that even in natural equivalent of this experiment, the feeding of calves on cows’ milk, transmission has not occurred, or does so only rarely. Consequently, cows’ milk is unlikely to carry BSE infectivity that might put consumers at risk. Furthermore, the control measures that have been put in place to eradicate BSE, and protect consumers in the interim, are succeeding in reducing numbers of infected cattle year by year. In conclusion, the studies, and their interpretation by EFSA, help to better understand the epidemiology of scrapie and exposure risks faced. Despite the precautionary impetus for additional measures to further strengthen animal health protection in regard to small ruminant TSEs, the question of the safety of products derived from bovine milk destined for human consumption remains unchanged.

References.

1. EFSA (2007). Opinion of the Scientific Panel on Biological Hazards on certain aspects related to the risk of Transmissible Spongiform Encephalopathies (TSEs) in ovine and caprine animals. 8 March 2007. The EFSA Journal. 466:1-10. Available at:-


http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620775196.htm



2. EFSA (2008). Scientific and technical clarification in the interpretation and consideration of some facets of the conclusions of its Opinion of 8 March 2007 on certain aspects related to the risk of Transmissible Spongiform Encephalopathies (TSEs) in ovine and caprine animals. The EFSA Journal. 626:1-11. Available at:


http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178685986247.htm



3. EFSA (2008). Scientific opinion of the Scientific Panel on Biological Hazards on the human and animal exposure risk related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants. The EFSA Journal. 849:2-38.Available at:-



http://www.efsa.europa.eu/cs/BlobServer/Scientific_Opinion/biohaz_op_ej849_tse_infectivity_en,0.pdf?ssbinary=true



4. Konold et al.: Evidence of scrapie transmission via milk, BMC Veterinary Research 2008, 4:14;


http://www.biomedcentral.com/1746-6148/4/14




TAFS

5

5. Lacroux, C., Simon, S., Benestad, S.L., Maillet, S., Mathey, J., Lugan, S., Corbiere, F., Cassard, H., Costes, P., Bergonier, D., WEisbecker, J-L., Moldal, T., Simmons, H., Lantier, F., Feraudet-Tarisse, C., Morel, N., Schelcher, F., Grassi, J. & Andreoletti, O. (2008) Prions in milk from ewes incubating natural scrapie. PLoS Pathogens. 4:12.


http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000238




6. Ligios, C., Sigurdson, C.J., Santucciu, C., Carcassola, G., Manco, G., Basagni, M., Maestrale, C., Cancedda, M.G., Madau, L. & Aguzzi, A. (2005). PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nat. Med. 11:1137-1138.

7. Vilotte, J.L., Soulier, S., Essalmani, R., Stinnakre, M.G., Vaiman, D., Lepourry, L., Da Silva, J.C., Besnard, N., Dawson, M., Buschmann, A., Groschup, M., Petit, S., Madelaine, M.F., Rakatobe, S., Le Dur, A., Vilette, D. & Laude, H. (2001). Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing ovine prp. J. Virol. 75:5977-84.

8. TAFS (2007) – Position paper on Atypical scrapie and Atypical BSE.



(http://www.tafsforum.org/position_papers/TAFS_POSITION_PAPER_ON_ATYPICAL_SCRAPIE_AND_%20ATYPICAL_BSE_070516.pdf)



9. TAFS (2007) – Position paper on the safety of bovine milk and bovine milk products


(http://www.tafsforum.org/position_papers/TAFS_POSITION_PAPER_ON_MILK_05-04-07.pdf)



10. TAFS (May 2007/2009) – Position paper on BSE in small ruminants.


(http://www.tafsforum.org/position_papers/TAFS%20POSITION%20STATEMENT%20ON%20BSE%20IN%20SMALL%20RUMINANTS_2009.pdf)





http://www.tafsforum.org/position_papers/TAFS_POSITION_PAPER_TRANSMISSION_SCRAPIE_MILK_2009.pdf





-------------------- mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000172/!x-usc:mailto:BSE-L@LISTS.AEGEE.ORG --------------------


Prions in Milk from Ewes Incubating Natural Scrapie

Caroline Lacroux1, Stéphanie Simon2, Sylvie L. Benestad3, Séverine Maillet2, Jacinthe Mathey1, Séverine Lugan1, Fabien Corbière1, Hervé Cassard1, Pierrette Costes1, Dominique Bergonier1, Jean-Louis Weisbecker4, Torffin Moldal3, Hugh Simmons5, Frederic Lantier6, Cécile Feraudet-Tarisse1,2, Nathalie Morel2, François Schelcher1, Jacques Grassi2, Olivier Andréoletti1*

1 UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France, 2 CEA, Service de Pharmacologie et d'Immunoanalyse, IBiTec-S, DSV, CEA/Saclay, Gif sur Yvette, France, 3 National Veterinary Institute, Sentrum, Oslo, Norway, 4 INRA Domaine de Langlade, Pompertuzat, France, 5 VLA Weybridge, New Haw, Addlestone, Surrey, United Kingdom, 6 INRA IASP, Centre INRA de Tours, Nouzilly, France

Abstract Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain. However, a recently published study brought the first evidence of the presence of prions in mammary secretions from scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However, bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the highest per ml infectious titre measured was found to be equivalent to that contained in 6 µg of a posterior brain stem from a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with milk products from ovine and other TSE-susceptible dairy species.

Author Summary A decade ago, a new variant form of Creutzfeldt-Jakob disease was identified. The emergence of this prion disease in humans was the consequence of the zoonotic transmission of bovine spongiform encephalopathy through dietary exposure. Since then, the control of human exposure to prions has become a priority, and a policy based on the exclusion of known infectious materials from the food chain has been implemented. Because all investigations carried out failed to reveal evidence of infectivity in milk from affected ruminants, this product has continuously been considered as safe. In this study, we demonstrate the presence of prions in colostrum and milk from sheep incubating natural scrapie and displaying apparently healthy mammary glands. This finding indicates that milk from small ruminants could contribute to the transmission of prion disease between animals. It also raises some concern with regard to the risk to humans associated with milk products from ovine and other dairy species.

Citation: Lacroux C, Simon S, Benestad SL, Maillet S, Mathey J, et al. (2008) Prions in Milk from Ewes Incubating Natural Scrapie. PLoS Pathog 4(12): e1000238. doi:10.1371/journal.ppat.1000238

Editor: Umberto Agrimi, Istituto Superiore di Sanità, Italy

Received: July 1, 2008; Accepted: November 12, 2008; Published: December 12, 2008

Copyright: © 2008 Lacroux et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was financially supported by GIS infections à prion (French Research Ministry), EU FAIR (QLK-CT 2001-390), and DEFRA (SE2004, contract: CSA 6914).

Competing interests: The authors have declared that no competing interests exist.

* E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000172/!x-usc:mailto:o.andreoletti@envt.fr

Introduction.........

SNIP...

full text ;



http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000238



TSS Human and animal exposure risk related to TSEs from milk Sun Nov 9, 2008 08:46 71.248.131.35

-------------------- mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000172/!x-usc:mailto:BSE-L@LISTS.AEGEE.ORG --------------------

Opinions

Human and animal exposure risk related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants Scientific opinion of the Panel on Biological Hazards Question number: EFSA-Q-2008-310

Adopted date: 22 October 2008 Summary (0.1Mb)

Opinion (0.2Mb)

Summary

Following a request from the European Commission (EC), the Panel on Biological Hazards (BIOHAZ) was asked to deliver a scientific opinion on the Human and animal exposure risk related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants.

In a recent scientific article from Konold et al., published on 8 April 2008 in BMC Veterinary Research, on "Evidence of scrapie transmission via milk" it is concluded that: ".there is a risk of the transmission of scrapie from ewe to lamb via milk or colostrum. Infection of lambs via milk may result in shedding of the infectious agent into the environment.".

The BIOHAZ Panel was invited to provide an opinion on the conclusions from the article of Konold et al. (2008), and if considered necessary, based on any additional available scientific data, to update the current risk assessments on the human and animal exposure related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants.

When approaching the mandate the BIOHAZ Panel did not consider the zoonotic potential of small ruminant TSE agents. This aspect is considered in detail in previous EFSA documents[1],[2]. The TSE agents considered in the assessment were Classical scrapie, Atypical scrapie and BSE. Moreover, the assessment was performed employing mainly data from TSE in sheep, which were considered valid also for TSE in goats due to the lack of more specific data in that species.

The Panel considered valid the conclusion of the article of Konold et al. (2008). Expanding the article of Konold et al. (2008), another study from Lacroux et al. (2008) independently demonstrated that Classical scrapie can be transmitted from susceptible ewe to transgenic mice via colostrum and milk. It was emphasized that both studies were designed to achieve the highest possibility of transmission success and that this could differ from the field situation. The Panel noted that in both studies, milk from asymptomatic donor ewes transmitted disease, indicating that clinically healthy, Classical scrapie-incubating sheep may shed the causal agents of these TSEs in milk. Moreover, the level of prion infectivity in small ruminant milk could become higher during the course of mastitis but the somatic cell count was considered as an unreliable indicator for presence or absence of TSE infectivity in small ruminant milk.

The Panel concluded that the use of milk and milk products from a flock with Classical scrapie may carry a TSE exposure risk for humans and animals. Furthermore, the use of milk and milk products from the general small ruminant population may carry a TSE exposure risk for humans and animals due to the presence of undetected affected flocks in that population. However, because of the difference in scrapie prevalence between affected flocks and the general small ruminant population, the risk of exposure for humans and animals associated with milk and milk products from the general small ruminant population will be lower than the risk from detected scrapie affected flocks.

The Panel also concluded that the exposure to a Classical scrapie agent via milk of an infected animal can be estimated to be 4 to 5 logs10 lower than the infectivity found in the same weight of brainstem from a terminally affected animal, and 2 to 3 logs10 lower the than infectivity found in the same weight of lymphoid tissues from an animal incubating scrapie or from a clinically affected animal.

The BIOHAZ Panel further noted that no information is available concerning the presence of infectivity or PrPSc in colostrum or milk from small ruminants affected by Atypical scrapie or BSE. However, the Panel emphasized that due to the early and progressive peripheral tissue dissemination of the BSE agent in experimentally infected susceptible sheep, the occurrence of infectivity in colostrum and milk of BSE infected susceptible small ruminants would be likely. On the other hand, the apparent restricted dissemination of the agent of Atypical scrapie in affected individuals could limit its transmissibility through milk.

As there is large variation between MS in prevalence of scrapie and production of small ruminant milk, the human and animal exposure associated with small ruminant dairy products varies greatly between MS.

The Panel further concluded that breeding of sheep for relative resistance to Classical scrapie according to the previous EFSA opinion[3] can be expected to reduce human and animal exposure associated with small ruminant dairy products.

The Panel recommended to perform research in order to characterise the exposure risk via milk especially in Atypical scrapie and BSE in small ruminants, to investigate on the stability of prion infectivity in milk during further processing, and to obtain more data to confirm and expand the preliminary information available on the quantitation of infectivity levels in small ruminant milk fractions. ___________________________________ [1]Opinion of the Scientific Panel on Biological Hazards on certain aspects related to the risk of Transmissible Spongiform Encephalopathies (TSEs) in ovine and caprine animals. The EFSA Journal (2007) 466, 1-10 [2] Scientific and technical clarification in the interpretation and consideration of some facets of the conclusions of its Opinion of 8 March 2007 on certain aspects related to the risk of Transmissible Spongiform Encephalopathies (TSEs) in ovine and caprine animals. The EFSA Journal (2008) 626, 1-11 [3] Opinion of the Scientific Panel on Biological Hazards on "the breeding programme for TSE resistance in sheep", The EFSA Journal (2006), 382, 1-46

Publication date: 6 November 2008



http://www.efsa.europa.eu/EFSA/Scientific_Opinion/biohaz_op_ej849_tse_infectivity_summary_en,0.pdf?ssbinary=true



http://www.efsa.europa.eu/EFSA/Scientific_Opinion/biohaz_op_ej849_tse_infectivity_en,0.pdf?ssbinary=true



Prion Protein in Milk Nicola Franscini1, Ahmed El Gedaily1, Ulrich Matthey1, Susanne Franitza1, Man-Sun Sy2, Alexander Bürkle3, Martin Groschup4, Ueli Braun5, Ralph Zahn1*

1 Alicon AG, Schlieren, Switzerland, 2 Institute of Pathology, Biomedical Research Building, Case Western University School of Medicine, Cleveland, Ohio, United States of America, 3 Lehrstuhl Molekulare Toxikologie, University of Konstanz, Konstanz, Germany, 4 Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald, Gemany, 5 Departement für Nutztiere, University of Zurich, Zurich, Switzerland

Abstract Background Prions are known to cause transmissible spongiform encephalopathies (TSE) after accumulation in the central nervous system. There is increasing evidence that prions are also present in body fluids and that prion infection by blood transmission is possible. The low concentration of the proteinaceous agent in body fluids and its long incubation time complicate epidemiologic analysis and estimation of spreading and thus the risk of human infection. This situation is particularly unsatisfactory for food and pharmaceutical industries, given the lack of sensitive tools for monitoring the infectious agent.

Methodology/Principal Findings We have developed an adsorption matrix, Alicon PrioTrap®, which binds with high affinity and specificity to prion proteins. Thus we were able to identify prion protein (PrPC)-the precursor of prions (PrPSc)-in milk from humans, cows, sheep, and goats. The absolute amount of PrPC differs between the species (from µg/l range in sheep to ng/l range in human milk). PrPC is also found in homogenised and pasteurised off-the-shelf milk, and even ultrahigh temperature treatment only partially diminishes endogenous PrPC concentration.

Conclusions/Significance In view of a recent study showing evidence of prion replication occurring in the mammary gland of scrapie infected sheep suffering from mastitis, the appearance of PrPC in milk implies the possibility that milk of TSE-infected animals serves as source for PrPSc.

Citation: Franscini N, Gedaily AE, Matthey U, Franitza S, Sy M-S, et al. (2006) Prion Protein in Milk. PLoS ONE 1(1): e71. doi:10.1371/journal.pone.0000071

Academic Editor: Matthew Baylis, University of Liverpool, United Kingdom

Received: October 19, 2006; Accepted: November 6, 2006; Published: December 20, 2006

Copyright: © 2006 Franscini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing interests: The authors have declared that no competing interests exist.

* To whom correspondence should be addressed. E-mail: mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000172/!x-usc:mailto:info@alicon.ch



http://www.plosone.org/article/fetchObjectAttachment.action;jsessionid=4BBFF07E478CCD52A627126F9BCC995A?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0000071&representation=PDF



Saturday, April 12, 2008 Evidence of scrapie transmission via milk

Saturday, April 12, 2008 Evidence of scrapie transmission via milk



http://scrapie-usa.blogspot.com/2008/04/evidence-of-scrapie-transmission-via.html



HAVE ANOTHER GLASS OF CWD PRIONS COURTESY Dane County Wisconsin Mike DiMaggio, solid waste manager



http://chronic-wasting-disease.blogspot.com/2008/08/have-another-glass-of-cwd-prions.html




Friday, October 24, 2008

CBER 2007 Annual Report Assessing the Potential Risk of variant Creutzfeldt-Jakob Disease from Blood Products



http://creutzfeldt-jakob-disease.blogspot.com/2008/10/cber-2007-annual-report-assessing.html



Friday, November 07, 2008 Human and animal exposure risk related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants

Opinions



http://scrapie-usa.blogspot.com/2008/11/human-and-animal-exposure-risk-related.html



1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

PMID: 6997404



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract



12/10/76 AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON SCRAPIE Office Note CHAIRMAN: PROFESSOR PETER WILDY

snip...

A The Present Position with respect to Scrapie A] The Problem

Scrapie is a natural disease of sheep and goats. It is a slow and inexorably progressive degenerative disorder of the nervous system and it ia fatal. It is enzootic in the United Kingdom but not in all countries.

The field problem has been reviewed by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in Britain for a variety of reasons but the disease causes serious financial loss; it is estimated that it cost Swaledale breeders alone $l.7 M during the five years 1971-1975. A further inestimable loss arises from the closure of certain export markets, in particular those of the United States, to British sheep.

It is clear that scrapie in sheep is important commercially and for that reason alone effective measures to control it should be devised as quickly as possible.

Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6



http://www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf



Epidemiology of Scrapie in the United States 1977



http://www.bseinquiry.gov.uk/files/mb/m08b/tab64.pdf



http://scrapie-usa.blogspot.com/



CHAPTER 3 Animal Disease Eradication Programs and Control and Certification Programs

snip...

In FY 2007, two field cases, one validation study case, and two RSSS cases were consistent with a variant of the disease known as Nor98 scrapie.1 These five cases originated from flocks in California, Minnesota, Colorado, Wyoming, and Indiana, respectively.

snip...



http://www.aphis.usda.gov/publications/animal_health/content/printable_version/AHR_Web_PDF_07/D_Chapter_3.pdf




NOR-98 Scrapie FY 2008 to date 1



http://www.aphis.usda.gov/animal_health/animal_diseases/scrapie/downloads/monthly_scrapie_rpt.pps




NOR-98 ATYPICAL SCRAPIE USA UPDATE AS AT OCT 2007



http://nor-98.blogspot.com/



TSS

Friday, December 12, 2008 Prions in Milk from Ewes Incubating Natural Scrapie


http://scrapie-usa.blogspot.com/2008/12/prions-in-milk-from-ewes-incubating.html



Attending Dr.: Date / Time Admitted : 12/14/97 1228

UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409) 772-1238 Fax (409) 772-5683 Pathology Report

FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858

FINAL AUTOPSY DIAGNOSIS

I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.



http://creutzfeldt-jakob-disease.blogspot.com/2008/07/heidenhain-variant-creutzfeldt-jakob.html





TSS

Labels: , ,

Tuesday, January 13, 2009

Experimental oral transmission of United States origin scrapie to neonatal sheep

Full Scientific Reports

Experimental oral transmission of United States origin scrapie to neonatal sheep

Amir N. Hamir1, Robert A. Kunkle, Justin J. Greenlee and Juergen A. Richt Correspondence: 1Corresponding Author: Amir N. Hamir, National Animal Disease Center, ARS, USDA, 2300 Dayton Avenue, PO Box 70, Ames, IA 50010. mhtml:%7B33B38F65-8D2E-434D-8F9B-8BDCD77D3066%7Dmid://00000111/!x-usc:mailto:amir.hamir@ars.usda.gov

Scrapie, a transmissible spongiform encephalopathy (TSE), is a naturally occurring fatal neurodegenerative disease of sheep and goats. The current study documents incubation periods, pathologic findings, and distribution of abnormal prion proteins (PrPSc) by immunohistochemistry and Western blot in tissues of genetically susceptible and resistant neonatal lambs inoculated with pooled brain homogenates from 13 U.S. origin scrapie-affected ewes. Nine Suffolk lambs with genotypes AA/RR/QQ (n = 5) and AA/RR/QR (n = 4) at codons 136, 154, and 171, respectively) were orally inoculated, within 12 hr of birth, with 1 ml of a 10% (w/v) brain homogenate prepared from scrapie-affected sheep brains. Inoculated animals were euthanized when advanced clinical signs of scrapie were observed. All QQ sheep developed clinical signs of scrapie, with a mean survival time of 24 months. Spongiform lesions in the brains and PrPSc deposits in the central nervous system and lymphoid tissues were present in these sheep. None of the QR sheep succumbed to the disease. A previous study that used a larger volume (30 ml of 10% brain suspension) of the same inoculum in 4-month-old Suffolk lambs of susceptible genotype documented longer survival periods (average 32 months), and only 5 of 9 inoculated sheep developed scrapie. Findings of this study suggest that orally exposed neonatal lambs of a susceptible (QQ) genotype exhibit a higher attack rate and shorter incubation period than older (4-month-old) lambs exposed to a larger dose (30x) of the same inoculum.

Key Words: Immunohistochemistry • neonatal sheep • scrapie • spongiform encephalopathy • Western blot



http://jvdi.org/cgi/content/abstract/21/1/64?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=prion&searchid=1&FIRSTINDEX=0&volume=21&issue=1&resourcetype=HWCIT




When Atypical Scrapie cross species barriers

Authors

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

Content

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.



http://www.neuroprion.org/resources/pdf_docs/conferences/prion2008/abstract-book-prion2008.pdf



SCRAPIE USA

INFECTED AND SOURCE FLOCKS

There were 20 scrapie infected and source flocks with open statuses (Figure 3) as of April, 30, 2008. Twenty eight new infected and source flocks have been designated in FY 2008 (Figure 4); three source flocks were reported in April. ...snip

POSITIVE SCRAPIE CASES

As of April 30, 2008, 122 new scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL) in FY 2008 (Figure 6). Of these, 103 were field cases and 19* were Regulatory Scrapie Slaughter Surveillance (RSSS) cases (collected in FY 2008 and reported by May 20, 2008). Positive cases reported for April 2008 are depicted in Figure 7. Eighteen cases of scrapie in goats have been confirmed by NVSL since implementation of the regulatory changes in FY 2002 (Figure 8). The most recent positive goat case was confirmed in February 2008 and originated from the same herd in Michigan as the other FY 2008 goat cases. ...snip

CAPRINE SCRAPIE PREVALENCE STUDY (CSPS)

snip...

However, four positive goats have been identified this fiscal year through field investigations. One was a clinical suspect submitted for testing and the other three originated from the birth herd of the clinical case.

ANIMALS SAMPLED FOR SCRAPIE TESTING

As of April 30, 2008, 26,703 animals have been sampled for scrapie testing: 23,378 RSSS, 1,517 goats for the CSPS study, 1,466 regulatory field cases, 270 regulatory third eyelid biopsies, and 72 regulatory rectal biopsies (chart 8).

TESTING OF LYMPHOID TISSUE OBTAINED BY RECTAL BIOPSY WAS APPROVED BY USDA AS AN OFFICIAL LIVE-ANIMAL TEST ON JANUARY 11, 2008. ...

PLEASE NOTE, (FIGURE 6), Scrapie Confirmed Cases in FY 2008 MAP, PA 3, 1**, Two cases-state of ID UNKNOWN, 1 case Nor98-like**



http://www.aphis.usda.gov/animal_health/animal_diseases/scrapie/downloads/monthly_scrapie_rpt.pps




http://scrapie-usa.blogspot.com/




P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.



http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf



Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

Edited by Stanley B. Prusiner, University of California, San Francisco, CA, and approved September 12, 2005 (received for review March 21, 2005)



http://www.pnas.org/cgi/content/abstract/0502296102v1



NOR-98 ATYPICAL SCRAPIE 5 cases documented in USA in 5 different states USA 007



http://nor-98.blogspot.com/2008/04/seac-spongiform-encephalopathy-advisory.html



Tuesday, June 3, 2008 SCRAPIE USA UPDATE JUNE 2008 NOR-98 REPORTED PA



http://nor-98.blogspot.com/2008/06/scrapie-usa-update-june-2008-nor-98.html



http://nor-98.blogspot.com/



Monday, December 1, 2008 When Atypical Scrapie cross species barriers



http://nor-98.blogspot.com/2008/12/when-atypical-scrapie-cross-species.html





Monday, September 1, 2008 RE-FOIA OF DECLARATION OF EXTRAORDINARY EMERGENCY BECAUSE OF AN ATYPICAL T.S.E. (PRION DISEASE) OF FOREIGN ORIGIN IN THE UNITED STATES [No. 00-072-1] September 1, 2008

Greetings again BSE-L members,

I had a pleasant surprise this past Saturday. I got an unexpected package from O.I.G. on my old F.O.I.A. request, of the final test results of the infamous mad sheep of mad river valley. IF you all remember, back on Thu, 24 Apr 2008 15:00:20 -0500 I wrote ;

Greetings,

With great disgust, I must report, that after years and years of wrangling over the infamous mad sheep of mad river valley, I have failed in getting an official answer via FOIA on the outcome of the TSE testing of those imported Belgium sheep. The USA Government refuses to tell the public, exactly what the testing outcome was, and in doing so, shows just how corrupt this administration has been. and the excuse given in their answer to my final appeal, which they have now officially denied, was bizarre to say the least ;

"I am denying your FOIA appeal. This is the final agency decision. You may seek judicial review of this decision in the United States district court for the judicial district in which you reside or have your principal place of business or in the District of Columbia, pursuant to 5 U.S.C. & 552(a)(4)(B)."

FOIA OF DECLARATION OF EXTRAORDINARY EMERGENCY BECAUSE OF AN ATYPICAL T.S.E. (PRION DISEASE) OF FOREIGN ORIGIN IN THE UNITED STATES [Docket No. 00-072-1] ...snip...end...TSS

NOW, out of the wild blue, AFTER them telling me they denied my FOIA appeal for the final time, any further action would have to be judicial review in the United States district court, I get 25+ pages, a lot of redacted names, etc, but this is the first time they sent me anything about this in the 6 years of waiting for my FOIA request. IT will take me a long time to get this online due to the fact you cannot hardly read it, very poor quality and eligibility of text. BUT, the just of it is, somebody (REDACTED) screwed those tests up. I will work to get all the data online next week or so, but it is odd how much they were concerned for human and animal health from an atypical scrapie of foreign origin back then, but yet when we document it here in the USA, you don't hear a word about it. it's a completely different story.

IN SHORT ;

August 15, 2000

OIG case # NY-3399-56 REDACTED, VT

''Enclosed is OIG's notification that they have scheduled an investigation of the following individual. REDACTED is alleged to have provided possibly inaccurate test results involving diseased sheep. However, because the results were determined to be inconclusive, no actual violation was actually committed.''

snip...

[only bush et al could have interpreted it that way. don't all criminals wish this is the way the system worked. ...tss]

JULY, 28, 2000

Case Opening Memorandum

snip...

An investigation regarding the subject identified below will be conduced and a report submitted at the conclusion of the investigation. If you have or should later receive additional information concerning this matter, please forward it to this office.

If you believe that administrative action should be taken before all criminal and other legal matters are completed, please coordinate that action with this office in order not to jeopardize the ongoing investigation.

The fact that this subject is under investigation should not be discussed with anyone who does not have a need to know and all inquiries on the investigation should be referred to the office of Inspector General.

snip...end

FOR OFFICIAL USE ONLY FEBRUARY 7, 2002

SUBJECT OIG CASE NY-3399-56 REDACTED VT HEALTH/SANITATION VIOLATION

TO: William Buisch, Regional Director Eastern Region, VS Raleigh, NC

Enclosed is the official investigation report on REDACTED. If you will recall, REDACTED is alleged to have provided possible inaccurate test results involving diseased sheep.

OIG is closing their file upon issuance of the Report of Investigation (copy enclosed). We are, therefore, also closing our case file.

REDACTED

Resource Management Systems and Evaluation Staff

Enclosure

cc:

REDACTED IES, Riverdale, MD (w/cy of incoming)

APHIS:RMSES: REDACTED 2/7/02 "NY-3399-56-REDACTED Closure''

END...TSS

NOW, the question is, who screwed those test up, and was it done on purpose, just to cover someone's ass for letting those sheep in here in the first place ???

WHICH tests were compromised, one of them, all of them, and, can we trust the outcome of any of these test under the circumstances here ???

i.e.

"It is significant that four of the sheep which first tested positive on REDACTED Western blot tests, thereby providing the type of confirmation the plaintiffs argue is lacking on the current record."

UNDER what circumstances were these test compromised ???

MY basic, simple question, was not answered in layman term, i.e. exactly what strain of TSE did those sheep have ???

IS this the best we can do ???


>>>"REDACTED is alleged to have provided possibly inaccurate test results involving diseased sheep. However, because the results were determined to be inconclusive, no actual violation was actually committed.''<<<


http://www.usda.gov/oig/webdocs/sarc070619.pdf




OR ;

FOR IMMEDIATE RELEASE Statement May 4, 2004 Media Inquiries: 301-827-6242 Consumer Inquiries: 888-INFO-FDA

Statement on Texas Cow With Central Nervous System Symptoms

On Friday, April 30 th , the Food and Drug Administration learned that a cow with central nervous system symptoms had been killed and shipped to a processor for rendering into animal protein for use in animal feed. FDA, which is responsible for the safety of animal feed, immediately began an investigation. On Friday and throughout the weekend, FDA investigators inspected the slaughterhouse, the rendering facility, the farm where the animal came from, and the processor that initially received the cow from the slaughterhouse. FDA's investigation showed that the animal in question had already been rendered into "meat and bone meal" (a type of protein animal feed).

Over the weekend FDA was able to track down all the implicated material. That material is being held by the firm, which is cooperating fully with FDA. Cattle with central nervous system symptoms are of particular interest because cattle with bovine spongiform encephalopathy or BSE, also known as "mad cow disease," can exhibit such symptoms. In this case, there is no way now to test for BSE. But even if the cow had BSE, FDA's animal feed rule would prohibit the feeding of its rendered protein to other ruminant animals (e.g., cows, goats, sheep, bison).



http://www.fda.gov/bbs/topics/news/2004/new01061.html




OR ;


BESIDES the Texas mad cow that sat on the shelf for 7+ months before the Honorable Phyllis Fong of the OIG finally did the end around Johanns et al and finally had Weybridge bring that negative cow back from the dead to finally being a confirmed mad cow (hint, hint, getting MRR implemented first), was this simply another bumbling of BSE protocol, or just same old same old; Jim Rogers (202) 690-4755 USDA Press Office (202) 720-4623 Statement by Chief Veterinary Medical Officer John Clifford Animal and Plant Health Inspection Service Regarding Non-Definitive BSE Test Results July 27, 2005

snip...

Our laboratory ran the IHC test on the sample and received non-definitive results that suggest the need for further testing. As we have previously experienced, it is possible for an IHC test to yield differing results depending on the “slice” of tissue that is tested. Therefore, scientists at our laboratory and at Weybridge will run the IHC test on additional “slices” of tissue from this animal to determine whether or not it was infected with BSE. We will announce results as soon as they are compiled, which we expect to occur by next week. I would note that the sample was taken in April, at which time the protocols allowed for a preservative to be used (protocols changed in June 2005). The sample was not submitted to us until last week, because the veterinarian set aside the sample after preserving it and simply forgot to send it in. On that point, I would like to emphasize that while that time lag is not optimal, it has no implications in terms of the risk to human health. The carcass of this animal was destroyed, therefore there is absolutely no risk to human or animal health from this animal.

snip...




http://www.aphis.usda.gov/lpa/news/2005/07/bsestatement_vs.html




snip...

please see full text ;




http://bse-atypical.blogspot.com/2008/06/mad-cows-and-computer-models-us.html




OR ;


USDA: In 9,200 cases only one type of test could be used

WASHINGTON (AP)--The U.S. Department of Agriculture acknowledged Aug. 17 that its testing options for bovine spongiform encephalopathy were limited in 9,200 cases despite its effort to expand surveillance throughout the U.S. herd.

In those cases, only one type of test was used--one that failed to detect the disease in an infected Texas cow.

The department posted the information on its website because of an inquiry from The Associated Press.

Conducted over the past 14 months, the tests have not been included in the department's running tally of BSE tests since last summer. That total reached 439,126 on Aug. 17. "There's no secret program," the department's chief veterinarian, John Clifford, said in an interview. "There has been no hiding, I can assure you of that."

Officials intended to report the tests later in an annual report, Clifford said.

These 9,200 cases were different because brain tissue samples were preserved with formalin, which makes them suitable for only one type of test--immunohistochemistry, or IHC. In the Texas case, officials had declared the cow free of disease in November after an IHC test came back negative. The department's inspector general ordered an additional kind of test, which confirmed the animal was infected.

Veterinarians in remote locations have used the preservative on tissue to keep it from degrading on its way to the department's laboratory in Ames, Iowa. Officials this year asked veterinarians to stop using preservative and send fresh or chilled samples within 48 hours.

The department recently investigated a possible case of BSE that turned up in a preserved sample. Further testing ruled out the disease two weeks ago.

Scientists used two additional tests--rapid screening and Western blot--to help detect BSE in the country's second confirmed case, in a Texas cow in June. They used IHC and Western blot to confirm the first case, in a Washington state cow in December 2003.

"The IHC test is still an excellent test," Clifford said. "These are not simple tests, either." Clifford pointed out that scientists reran the IHC several times and got conflicting results. That happened, too, with the Western blot test. Both tests are accepted by international animal health officials.

Date: 8/25/05




http://www.hpj.com/archives/2005/aug05/aug29/BSEtestoptionswerelimited.cfm




WELL, someone did call me from Bio-Rad about this, however it was not Susan Berg. but i had to just about take a blood oath not to reveal there name. IN fact they did not want me to even mention this, but i feel it is much much to important. I have omitted any I.D. of this person, but thought I must document this ;

Bio-Rad, TSS phone conversation 12/28/04..........


snip... FULL TEXT ;





http://foiamadsheepmadrivervalley.blogspot.com/2008/09/re-foia-of-declaration-of-extraordinary.html





FOIA MAD SHEEP MAD RIVER VALLEY




http://foiamadsheepmadrivervalley.blogspot.com/





EVIDENCE OF SCRAPIE IN SHEEP AS A RESULT OF FOOD BORNE EXPOSURE

This is provided by the statistically significant increase in the incidence of sheep scrape from 1985, as determined from analyses of the submissions made to VI Centres, and from individual case and flock incident studies. ........



http://www.bseinquiry.gov.uk/files/yb/1994/02/07002001.pdf




IN CONFIDENCE

TRANSMISSION TO CHIMPANZEE'S

1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not. 2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of filed isolates subsequently strain typed in mice be inoculated by the appropriate routes (i/c, i/p and i/v).

3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.

4. In view of Dr. Gibbs' probable use of chimpanzees Mr. Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.

5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I HAVE A VIEW THAT ALL THESE AGENTS COULD BE TRANSMITTED provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to RETAIN that hypothesis.

A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding man's susceptibility. In the meantime no doubt the negativity would be used defensively. IT WOULD HOWEVER BE COUNTERPRODUCTIVE IF THE EXPERIMENT BECAME POSITIVE. We may learn more about public reactions following next Monday's meeting.

R. Bradley

23 September 1990

CVO (+ Mr Wells' comments)

Dr T W A Little

Dr B J Shreeve

90/9.23/1.1




http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf




IN CONFIDENCE

CHIMPANZEES




http://www.bseinquiry.gov.uk/files/yb/1990/09/26003001.pdf





12/10/76

AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON SCRAPIE

Office Note CHAIRMAN: PROFESSOR PETER WILDY

snip...

A The Present Position with respect to Scrapie A] The Problem

Scrapie is a natural disease of sheep and goats. It is a slow and inexorably progressive degenerative disorder of the nervous system and it ia fatal. It is enzootic in the United Kingdom but not in all countries.

The field problem has been reviewed by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in Britain for a variety of reasons but the disease causes serious financial loss; it is estimated that it cost Swaledale breeders alone $l.7 M during the five years 1971-1975. A further inestimable loss arises from the closure of certain export markets, in particular those of the United States, to British sheep.

It is clear that scrapie in sheep is important commercially and for that reason alone effective measures to control it should be devised as quickly as possible.

Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6



http://www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf




3.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE.339 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture.340 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre.341 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle,


*** did not produce the same clinical signs of brain lesions characteristic of BSE. ***


3.58 There are several possible reasons why the experiment was not performed in the UK. It had been recommended by Sir Richard Southwood (Chairman of the Working Party on Bovine Spongiform Encephalopathy) in his letter to the Permanent Secretary of MAFF, Mr (now Sir) Derek Andrews, on 21 June 1988,342 though it was not specifically recommended in the Working Party Report or indeed in the Tyrrell Committee Report (details of the Southwood Working Party and the Tyrell Committee can be found in vol. 4: The Southwood Working Party, 1988–89 and vol. 11: Scientists after Southwood respectively). The direct inoculation of scrapie into calves was given low priority, because of its high cost and because it was known that it had already taken place in the USA.343 It was also felt that the results of such an experiment would be hard to interpret. While a negative result 337 Fraser, H., Bruce, M., Chree, A., McConnell, I. and Wells, G. (1992) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice, Journal of General Virology, 73, 1891–7; Bruce, M., Chree, A., McConnell, I., Foster, J., Pearson, G. and Fraser, H. (1994) Transmission of Bovine Spongiform Encephalopathy and Scrapie to Mice: Strain Variation and the Species Barrier, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 343, 405–11 338 Bruce, M., Will, R., Ironside, J., McConell, I., Drummond, D., Suttie, A., McCordie, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. (1997) Transmissions to Mice Indicate that ‘New Variant’ CJD is Caused by the BSE Agent, Nature, 389, 498–501 339 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606–12 340 YB88/10.00/1.1 341 Cutlip, R., Miller, J., Race, R., Jenny, A., Katz, J., Lehmkuhl, H., Debey, B. and Robinson, M. (1994) Intracerebral Transmission of Scrapie to Cattle, Journal of Infectious Diseases, 169, 814–20 342 YB88/6.21/1.2 343 YB88/11.17/2.4 SCIENCE 84 would be informative, a positive result would need to demonstrate that when scrapie was transmitted to cattle, the disease which developed in cattle was the same as BSE.344 Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.



http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf




1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

PMID: 6997404



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract





In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

3. Prof. A Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. BSE was not reported in the USA.


snip...


CWD occurred principally in two locations, this one at Sybille and in a similar faccility at Fort Collins, Colorado, some 120 miles southwest. It was estimated that in total probably 60-70 cases of CWD have occurred.

It was difficult to gain a clear account of incidence and temporal sequence of events (-this presumably is data awaiting publication - see below) but during the period 1981-1984, 10-15 cases occurred at the Sybille facility.

The moribidity amongst mule deer in the facilities ie. those of the natural potentially exposed group has been about 90% with 100% mortality.

snip...

Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.



http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf





Sunday, December 28, 2008

MAD COW DISEASE USA DECEMBER 28, 2008 an 8 year review of a failed and flawed policy




http://bse-atypical.blogspot.com/2008/12/mad-cow-disease-usa-december-28-2008-8.html







Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518

Labels: